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1 Introduction

Helly-type theorems state that if a property A holds for any subfamily of a
family of sets F that is of a given finite size h and property, then some prop-
erty B holds for the whole family F of arbitrary finite size n. An equivalent
and often useful formulation provided by negations is that if F doesn’t have
property B, then some subfamily of size h doesn’t have property A. The mini-
mal number h for which a given Helly-type statement holds will be referred to
as the Helly-number.
These types of theorems thus provide a structure for algorithms for checking
property B for a family of sets whose running time is polinomial as a func-
tion of the size of the family as there are at most

(
n
h

)
subfamilies of size h

with a given property, which is a polinomial of degree h in n.
The structure of this paper is the following. Section 2 gives an overview of some
of the most notable Helly-type theorems that are currently known and provides
a more detailed description of two particular types of Helly theorems, namely
colorful volume theorems, and box-piercing theorems. Section 3 offers some re-
sults in an attempt to combine these two particular directions. Finally, Section
4 presents the proofs of the results.

2 Helly-type theorems

Helly’s original statement is about the emptyness of the intersection of
a family of convex sets in Euclidean space.
Theorem (Helly). For a finite family F of convex sets in Rd if any (d+1)-tuple
of sets in F has a non-empty intersection, then all sets in F have a non-empty
intersection.
Note that here property A and B are the same. This theorem is equivalent to
Radon’s theorem about the convex hull of points in Rd

Lovász and later Bárány introduced a property on the subfamilies, namely
that they be systems of distinct representatives of a given substructure
that gives a stronger result, the so called Colorful Helly Theorem.
Theorem (Colorful Helly Theorem, Lovász, Bárány). For finite
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families F1, ...,Fd+1 of convex sets in Rd if any colorful selection
C1 ∈ F1, ..., Cd+1 ∈ Fd+1 has a non-empty intersection, then there is a
family Fi such that all sets in Fi have a non-empty intersection.
The original Helly theorem is the subcase of this statement when all families
are the same. The statement follows from Helly’s theorem by considering
a lexicographic ordering on the points of Rd. More recently Kalai and
Meshullum proved an extended version of this theorem which states that
not only is there an intersecting family, but it can also be extended by a colorful
selection from the other families while still intersecting.
Bárány, Katschalski and Pach showed a Helly-type theorem about a
stronger property B on the family of convex sets. Their Quantitative
Volume Theorem provides a condition not only for the emptyness of the
intersection, but also gives a lower bound for the volume of intersection
of sets.
Theorem (Quantitative Volume Theorem, Bárány, Katschalski, Pach) For
a finite family F of convex sets in Rd if any 2d-tuple has an intersection of
volume at least 1, then all sets in F have an intersection of volume at least
cd == d−2d2

.
Note that here property B is weaker than A although both are lower bounds
on the volume of the intersection. This is sometimes the case with quanti-
tative volume theorems. Note also that the Helly number is larger than in
the original Helly theorem. The constant cd was later reduced to d−2d by others.

2.1 Colorful Volume Theorems

The results of Damásdi, Földvári and Naszódi combines the conditions of
the colorful version and the quantitative version of Helly’s theorem giving a
lower bound on the intersection of a family of convex bodies (not any convex
sets) if there is a common lower bound on the intersection of every colorful
selection. In one version the number of families is d(d + 3)/2 and the lower
bound on the family is the same.
In the other version there are only 3d families and the lower bound has to
hold for any colorful selection of size 2d. The lower bound on the family is
cd

2

d−5d2/2, however.
These result rely on John’s theorem about the largest volume ellipsoids
contained in convex bodies and the quantitative volume theorem.

2.2 Piercing boxes

Another possible variant of Helly’s theorem generalizes the notion of inter-
section with the notion of piercing.
Definition: A set P pierces a family of sets F if for any set S ∈ F there is
an element p ∈ P such that p ∈ S. If |P | = n, then F is n-pierceable.
Note that if an intersection of sets is non-emty if and only if it is 1-pierceable.
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All previously discussed statements were about families of convex sets. How-
ever, there are no Helly-type theorems about n-piercing for all families of
convex sets if both property A and B is n-piercability for n > 1. For example
Chakraborty et al. showed that for any constant h > 0 there exists a family
of circles in the plane such that any subfamily of size h is 2-pierceable but the
whole family is not 2-pierceable.
Danzer and Grünbaum showed the Helly-number for all possible Helly-type
theorems for n-piercing families of axis-parallel boxes in Euclidean space
where both property A and B are n-piercing.
Theorem (Danzer, Grünbaum). If h = h(d, n) is the smallest positive integer
such that for any finite family F of axis-parallel boxes in Rd every h-tuple from
F is n-pierceable implies that F is n-pierceable then following are the values of
h:

h(d, 1) = 2

h(1, n) = n+ 1

h(d, 2) =

{
3d : 2 | d
3d− 1 : 2 ∤ d

h(2, 3) = 16

h(d, n) = ℵ0 n ≥ 3, (d, n) ̸= (2, 3)

Chakraborty, Ghosh and Nandi combined previous statements and showed
an extended colorful Helly-type theorem for n-piercing intervals and
2-piercing axis-parallel boxes.
Note that the cases n = 3, d = 2 and n ≥ 3, d ≥ 3 are not yet known.
The simple colorful version of this theorem is a trivial consequence of the ex-
tended version. Furthermore, the proof of the extended version is not an essen-
tial part of the proof as it only follows by adding a last step to the proof after
already showing the colorful version.

3 Results

This section presents an attempt at combining the directions in Sections 2.1 and
2.2. Thus, it introduces frameworks which allows for statements about volume
that generalize piercing boxes. This is achieved by the notion of punching holes
into boxes.

3.1 Punching holes into boxes

Definition: For volume set V ⊂ R>0 and enumeration ν : V → Z>0 a family
a of d-dimensional boxes F = {

∏d
j=1[aij , bij ] : i ∈ I} for some index set I is
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V , ν-punchable if there is a family of d-dimensional boxes H such that

∀v ∈ V ν(v) = |{H ∈ H : Vol(H) = v}| (1)

∀B ∈ F ∃H ∈ H H ⊂ B (2)

If (2) holds for some families of boxes F ,H then H punches F . If the volume
set has 1 element V = {v} and ν(v) = n and there is a family H for which
(1),(2) hold, then F is n-punchable.
Definition: A family of sets F is intersection-connected if the intersection
graph IF = (F , E) is connected where ∀x ̸= y ∈ F , (x, y) ∈ E ⇐⇒ x ∩ y ̸= ∅.
Definition: An intersection-connected family of d-dimensional boxes is
intersection-punchable if there is a family of d-dimensional boxes H which
punches F such that

∀B ∈ F ∃H ∈ H ∃B′ ∈ F \ {B} H ⊂ B ∩B′ (3)

Definition: A family of d-dimensional boxes is n-sum-s-punchable if there
is a family of d-dimensional boxes H that punches F such that∑

H∈H
Vol(H) = s (4)

|H| = n (5)

3.2 Statements

Statement 1: For a family of intervals F = {Ii[ai, bi] ⊂ R : i ∈ I} if any
subfamily of n+ 1-elements is n-punchable, then F is n-punchable.
Statement: If any translates of a set of d-dimensional boxes H = {A,B}
punches any subfamily of 3d elements of the family F then H punches F .
Statement: For a family of intervals F = {[ai, bi] ⊂ R : i ∈ I} if any subfamily
of 3 elements is intersection-connected and 2-sum-1-intersection-punchable, then
F is 2-sum-1-(intersection)-punchable.

Conjecture: For a family of d-dimensional boxes F = {
∏d

i=1[ai, bi] ⊂ R : i ∈
I} if any subfamily of n + 1 elements is intersection-connected and n-sum-1-
intersection-punchable, then F is n-sum-1-(intersection)-punchable.
Observation: If any 2d element subfamily of a family of d-dimensional boxes
is 1-punchable, then F is 1-punchable.
Statement 2: For any dimension d there is a family F of d-dimensional boxes
such that any 3d-tuple is 2-punchable, but F is only {ε}, 2-punchable for any
ε > 0.
Corollary: In any Helly-type theorem about 2-punching boxes, the Helly number
has to be at least 3d+ 1.
Conjecture: For a family of d-dimensional boxes F = {

∏d
i=1[ai, bi] ⊂ Rd : i ∈

I} if any subfamily of 4d-elements is 2-punchable, then F is 2-punchable.
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4 Proofs

Proof of Statement 1:
Observation: If A,B ⊂ Rd are convex sets, then their Minkowski-difference
A−B is also a convex set.
Observation: If A,B,C ⊂ Rd then C + t ⊂ A∩B for some t ∈ Rd if and only
if A− C ∩B − C ̸= ∅ where S − T denotes the Minkowski-difference.
Proof: A− C equals the set of vectors v such that C + v ⊂ A.
Observation: All intervals of volume 1 are translates of each other.
Let I = [0, 1], then any tuple I1, ..., In+1 is n-punchable if and only if Ii −
I, ..., In+1 − I is n-piercable. The theorem follows thus from the theorem of
Danzer and Grünbaum about n-piercing intervals. ■
Proof of Statement 2:
The following families of boxes of size 4d have the given property.

For d dimensions let Bij =
d∏

k=1

Ik for 1 ≤ i ≤ d, 1 ≤ j ≤ 4, where Ik = [−2, 2] =

I for k ̸= i and Ii =


[−2,−1 + ε/2] : j = 1

[−1− ε/2, 0] : j = 2

[0, 1 + ε/2] : j = 3

[1− ε/2, 2] : j = 4

Then F = {cBij : 1 ≤ i ≤ d, 1 ≤ j ≤ 4} where c = 1
(εd−1(1+ε/2))1/d

.

Claim: Any subfamily F ′ ⊂ F of size 3d is 2-punchable.
Proof: Since |F | = 4d and |F ′ = 3d| there is either a) an i for which only 2
Bij1 , Bij2 boxes are in F ′ or b) there are 3 for any i. Since all boxes in F are
punched by the intersection of F in case a) F ′ \ {Bij1 , Bij2} are also punched
by two ε-boxes of the intersection of F . By exteding these to Iij1 and Iij2 along
the coordinate axis i, we get two punching boxes of size 1. In case b) there is
a box Bij for every i that does not intersect any other Bij′ with the same i.
Then given two punching boxes from the intersection of F , one can be extended
along coordinate axis i for Bij of the previous property and for the other also
punches another Bi′j′ with this property, so the box can be extended along the
i′ axis for the other box. Thus we get two punching boxes of size 1.
F can only be punched by 2 boxes of size (cε)d = ε

1+ε < ε for any ε > 0. ■
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