The translation invariant product measure problem in non-sigma finite case

Nicha Khenkhok

May 25, 2023

1 Introduction

Let (X, \mathcal{A}, μ) be a measure space with σ-algebra \mathcal{A} and measure μ, and $(\mathbb{R}, \mathcal{B}, \nu)$ be a real measure space with the Borel σ-algebra \mathcal{B} and the Lebesgue measure ν. Denote their product measure space by $(X \times \mathbb{R}, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$, where the product measure is arbitrary. Define a product measure using the definition given by D.H. Fremlin in [1]. The set function $\mu \times \nu$: $\mathcal{A} \otimes \mathcal{B} \rightarrow[0, \infty]$ is a product measure iff it is a measure and for every measurable rectangle $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$, we have

$$
\mu \times \nu(A \times B)=\mu(A) \nu(B)
$$

We shall fix these measure spaces throughout the article.
The Lebesgue measure is know to be translation-invariant. One question we may ask is whether a product measure $\mu \times \nu$ inherits this property in the sense that any shift of a measurable set $B \in \mathcal{A} \otimes \mathcal{B}$ along the real axis does not alter the measure. Formally, we conjecture
1.1 Conjecture. Let the product measure space ($X \times \mathbb{R}, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu$) be arbitrary and a set $B \in \mathcal{A} \otimes \mathcal{B}$ be given. For any $c \in \mathbb{R}$, define the vertical shift of B by c as the set

$$
B+c:=\{(x, y+c):(x, y) \in B\} \in \mathcal{A} \otimes \mathcal{B} .
$$

Then, $\mu \times \nu(B+c)=\mu \times \nu(B)$.
If the measure space (X, \mathcal{A}, μ) is σ-finite, then the conjecture holds trivially as the product measure is unique. This unique product measure is obtained through the Carathéodory's extension theorem. As for the non- σ-finite case, we will show that the conjecture is not true.

2 Completely locally determined product measure

Let $(X, \mathcal{A}, \mu)=([0,1], \mathcal{B}, \mu)$, where \mathcal{B} is the Borel σ-algebra and μ is the counting measure. Then, we may define the measurable space of (X, \mathcal{A}, μ) and $(\mathbb{R}, \mathcal{B}, \nu)$. Let

$$
\pi(E)=\inf \left\{\sum_{n=0}^{\infty} \mu \times \nu\left(A_{n} \times B_{n}\right):\left\{A_{n}\right\}_{n \in \mathbb{N}} \subseteq X,\left\{B_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathbb{R}, E \subseteq \bigcup_{n=0}^{\infty} A_{n} \times B_{n}\right\}
$$

be the product measure space obtained through the Carathéodory's extension theorem.

Another candidate as a product measure is the completely locally determined product measure (c.l.d), which the reader may refer to [1] for further details. The c.l.d product measure is given by

$$
\rho(E)=\{\pi(E \cap(A \times B)): A \in \mathcal{A}, B \in \mathcal{B}, \mu(A)<\infty, \nu(B)<\infty\}
$$

On the diagonal $\Delta=\{(x, x): x \in[0,1]\}$, which can be written as

$$
\Delta=\bigcap_{n=1}^{\infty} \bigcup_{n=1}^{\infty}\left[\frac{k}{n}, \frac{k+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right] \in \mathcal{A} \otimes \mathcal{B}
$$

we have $\pi(\Delta)=\infty$ and $\rho(\Delta)=0$.

3 Counterexample measure

We will construct a product measure, which utilises the c.l.d. measure. Let $\Delta=\{(x, x): x \in$ $[0,1]\}$ as before. Recall that $\nu: \mathcal{B} \rightarrow[0, \infty]$ is the Lebesgue measure on the Borel σ-algebra . Define $f:[0,1] \rightarrow[0,1] \times[0,1]$ to be

$$
f(x)=(x, x),
$$

which is a measurable function on $[0,1]$. As every preimage $f^{-1}[E]$ of a measurable set $E \in \mathcal{A} \otimes \mathcal{B}$ is measurable in \mathcal{B}, we can safely define the set function $\xi: \mathcal{A} \otimes \mathcal{B} \rightarrow[0,1]$ as

$$
\xi(E)=\nu\left(f^{-1}[E \cap \Delta]\right) .
$$

We claim that ξ is a measure. Trivially, $\xi(\emptyset)=0$. We now check the σ-additivity property. Let $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{A} \otimes \mathcal{B}$ be a sequence of disjoint sets. Then,

$$
\begin{aligned}
\xi\left(\bigcup_{n=0}^{\infty} E_{n}\right) & =\nu\left(f^{-1}\left[\bigcup_{n=0}^{\infty} E_{n} \cap \Delta\right]\right) \\
& =\nu\left(f^{-1}\left[\bigcup_{n=0}^{\infty}\left(E_{n} \cap \Delta\right)\right]\right) \\
& =\nu\left(\bigcup_{n=0}^{\infty} f^{-1}\left[E_{n} \cap \Delta\right]\right) \\
& =\sum_{n=0}^{\infty} \nu\left(f^{-1}\left[E_{n} \cap \Delta\right]\right) \\
& =\sum_{n=0}^{\infty} \xi\left(E_{n}\right) .
\end{aligned}
$$

That is, ξ is indeed a measure on $\mathcal{A} \otimes \mathcal{B}$. We now proceed to the main result.
3.1 Theorem. There exists a product measurable space $(X \times \mathbb{R}, \mathcal{A} \otimes \mathcal{B}, \mu \times \nu)$ such that for some $c \in \mathbb{R}$ and some measurable set $B \in \mathcal{A} \otimes \mathcal{B}$, the vertical shift of B by c results in a change in measure. That is, $\mu \times \nu(B) \neq \mu \times \nu(B+c)$.

Proof. We assume the notions previously defined in this section. Consider the set function $\eta: \mathcal{A} \otimes \mathcal{B} \rightarrow[0, \infty]$ given by

$$
\eta(E)=\rho(E)+\xi(E) .
$$

Since η is a sum of measures on $\mathcal{A} \otimes \mathcal{B}$, we have that η is also a measure on $\mathcal{A} \otimes \mathcal{B}$. We remain to prove that η is a product measure. For this, we consider the following cases for a measurable rectangle $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$.

- If $\mu(A)<\infty$ and $\nu(B) \leq \infty$, then A has finitely many points since μ is a counting measure. So, $A=\left\{a_{1}, \ldots, a_{k}\right\}$ for some $k \in \mathbb{N}$. It holds that

$$
A \times B=\left\{a_{1}, \ldots, a_{k}\right\} \times B \subseteq\left\{a_{1}, \ldots, a_{k}\right\} \times \mathbb{R}=A \times \mathbb{R}
$$

and hence,

$$
\Delta \cap(A \times B) \subseteq \Delta \cap(A \times \mathbb{R})=\left\{(x, x): x=a_{1}, \ldots, a_{k}\right\}
$$

Using monotonicity of measure,

$$
\xi(A \times B) \leq \xi(A \times \mathbb{R})=\nu\left(f^{-1}[\Delta \cap(A \times \mathbb{R})]\right)=\nu\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)=0
$$

Therefore, $\eta(A \times B)=\rho(A \times B)+\underbrace{\xi(A \times B)}_{0}=\rho(A \times B)=\mu(A) \nu(B)$.

- If $\mu(A)=\infty$ and $\nu(B)>0$, then $\rho(A \times B)=\mu(A) \nu(B)=\infty$. Therefore,

$$
\eta(A \times B)=\underbrace{\rho(A \times B)}_{\infty}+\underbrace{\xi(A \times B)}_{\geq 0}=\underbrace{\rho(A \times B)}_{\infty}=\mu(A) \nu(B) .
$$

- If $\mu(A)=\infty$ and $\nu(B)=0$, then $\rho(A \times B)=\mu(A) \nu(B)=0$. It holds that

$$
f^{-1}[\Delta \cap(A \times B)] \subseteq f^{-1}[\Delta \cap(\mathbb{R} \times B)]=B \cap[0,1]
$$

By monotonicity of measure,

$$
\xi(A \times B)=\nu\left(f^{-1}[\Delta \cap(A \times B)]\right) \leq \nu(B \cap[0,1]) \leq \nu(B)=0
$$

Thus, $\eta(A \times B)=\rho(A \times B)+\xi(A \times B)=0=\mu(A) \nu(B)$.
Therefore, η is indeed a product measure. Furthermore, $\eta(\Delta)=\rho(\Delta)+\xi(\Delta)=0+1=1$. However, $\eta(\Delta+1)=\rho(\Delta+1)+\xi(\Delta+1)=0+0=0$.

References

[1] David H. Fremlin. Measure Theory. Vol. 2. Colchester, UK: Torres Fremlin, 2001. isbn: 978-0-9538129-7-4.

