The translation invariant product measure problem in non-sigma finite case

Author: Nicha Khenkhok Supervisor: Gábor Sági, PhD.

May 23, 2022

Introduction

PRODUCT MEASURE SPACE

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces.
A product measure space is the space $X \times Y$ equipped with

- the σ-algebra $\mathcal{A} \otimes \mathcal{B}$ generated by the $\operatorname{set}\{A \times B: A \in \mathcal{A}, B \in \mathcal{B}\}$,
- a product measure $\lambda: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathbb{R}_{0}^{+}$.

Product measure

A measure $\lambda: \mathcal{A} \otimes \mathcal{B} \rightarrow \mathbb{R}_{0}^{+}$is a product measure of μ and ν if for all $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$,

$$
\lambda(A \times B)=\mu(A) \nu(B) .
$$

DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Disclaimer: product measure is not necessarily unique. Let
$E \in \mathcal{A} \otimes \mathcal{B}$, we define
The primitive product measure:

$$
\pi(E)=\inf \left\{\sum_{n=1}^{\infty} \mu\left(A_{n}\right) \nu\left(B_{n}\right): \mathcal{A}_{n} \in \mathcal{A}, B_{n} \in \mathcal{B}, E \subseteq \bigcup_{n=1}^{\infty} A_{n} \times B_{n}\right\} .
$$

The completely locally determined (c.l.d) product measure:

$$
\rho(E)=\sup \{\pi(E \cap(A \times B)): \mathcal{A} \in \mathcal{A}, B \in \mathcal{B} ; \mu(A), \nu(B)<\infty\} .
$$

DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Suppose that

- $X, Y=[0,1]$;
- $\mathcal{A}=$ Lebesgue σ-algebra, $\mathcal{B}=\mathcal{P}([0,1])$;
- $\mu=$ Lebesgue measure, $\nu=$ counting measure.

Consider the set $\Delta=\{(x, x): x \in[0,1]\}$ in $\mathcal{A} \otimes \mathcal{B}$

$$
\Delta=\bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty}\left[\frac{k}{n}, \frac{k+1}{n}\right] \times\left[\frac{k}{n}, \frac{k+1}{n}\right]
$$

Then, the primitive product measure gives $\pi(\Delta)=+\infty$ and the c.l.d measure gives $\rho(\Delta)=0$.

INTRODUCTION

Preliminary Check

PRELIMINARY CHECK

We need that any vertical translate $B+c$ of B is in the product σ-algebra $\mathcal{A} \otimes \mathcal{B}$. Its proof utilises ideas from ...

Construction of a generated σ-ALGebra

Let X be a set and $\{\emptyset, X\} \subseteq \mathcal{C} \subseteq \mathcal{P}(X)$ be a family of (generating) sets. Let α be an ordinal and λ be a limit ordinal. Define

1. $\mathcal{F}_{0}:=\mathcal{C}$;
2. $\mathcal{F}_{\alpha+1}:=\mathcal{F}_{\alpha} \cup\left\{\bar{F}: A \in \mathcal{F}_{\alpha}\right\} \cup\left\{\bigcup_{n \in \mathbb{N}} F_{n}: F_{n} \in \mathcal{F}_{\alpha}\right\}$ and
3. $\mathcal{F}_{\lambda}:=\bigcup_{\alpha<\lambda} F_{\alpha}$.

Then, $\mathcal{F}_{\omega_{1}}$ is the generated by \mathcal{C}.

The Answer

The Answer to the Problem

The main result

There exists a product measurable space $X \times \mathbb{R},, \mu \times \nu$ such that for some $c \in \mathbb{R}$ and some measurable set $B \in$, the vertical shift of B by c results in a change in measure. That is, $\mu \times \nu(B) \neq \mu \times \nu(B+c)$.

We will construct a product measure, which utilises the c.l.d. measure.

The Proof

Preparation

Let $\Delta=\{(x, x): x \in[0,1]\}$ as before. Recall that $\nu: \mathcal{B} \rightarrow[0, \infty]$ is the Lebesgue measure on the Borel. Define $f:[0,1] \rightarrow[0,1] \times[0,1]$ to be

$$
f(x)=(x, x),
$$

which is a measurable function on $[0,1]$. Define the set function $\xi: \rightarrow[0,1]$ as

$$
\xi(E)=\nu\left(f^{-1}[E \cap \Delta]\right)
$$

Claim: The set function ξ is a measure.
Proof. Trivially, $\xi(\emptyset)=0$. We now check the σ-additivity property. Let $\left\{E_{n}\right\}_{n \in \mathbb{N}} \subseteq \mathcal{A} \otimes \mathcal{B}$ be a sequence of disjoint sets. Then,

$$
\begin{aligned}
\xi\left(\bigcup_{n=0}^{\infty} E_{n}\right) & =\nu\left(f^{-1}\left[\bigcup_{n=0}^{\infty} E_{n} \cap \Delta\right]\right)=\nu\left(f^{-1}\left[\bigcup_{n=0}^{\infty}\left(E_{n} \cap \Delta\right)\right]\right) \\
& =\nu\left(\bigcup_{n=0}^{\infty} f^{-1}\left[E_{n} \cap \Delta\right]\right)=\sum_{n=0}^{\infty} \nu\left(f^{-1}\left[E_{n} \cap \Delta\right]\right) \\
& =\sum_{n=0}^{\infty} \xi\left(E_{n}\right) .
\end{aligned}
$$

PROOF OF THE MAIN RESULT

The main result

There exists a product measurable space $X \times \mathbb{R},, \mu \times \nu$ such that for some $c \in \mathbb{R}$ and some measurable set $B \in$, the vertical shift of B by c results in a change in measure. That is, $\mu \times \nu(B) \neq \mu \times \nu(B+c)$.

Proof. Recall that the c.l.d. product measure is denoted by ρ.
Consider the set function $\eta: \mathcal{A} \otimes \mathcal{B} \rightarrow[0, \infty]$ given by

$$
\eta(E)=\rho(E)+\xi(E) .
$$

Clearly, η is a measure on $\mathcal{A} \otimes \mathcal{B}$. We claim that η is a product measure.

Case 1. If $\mu(A)<\infty$ and $\nu(B) \leq \infty$, then A has finitely many points since μ is a counting measure. So, $A=\left\{a_{1}, \ldots, a_{k}\right\}$ for some $k \in \mathbb{N}$. It holds that

$$
A \times B=\left\{a_{1}, \ldots, a_{k}\right\} \times B \subseteq\left\{a_{1}, \ldots, a_{k}\right\} \times \mathbb{R}=A \times \mathbb{R}
$$

and hence,

$$
\Delta \cap(A \times B) \subseteq \Delta \cap(A \times \mathbb{R})=\left\{(x, x): x=a_{1}, \ldots, a_{k}\right\}
$$

Using monotonicity of measure,

$$
\xi(A \times B) \leq \xi(A \times \mathbb{R})=\nu\left(f^{-1}[\Delta \cap(A \times \mathbb{R})]\right)=\nu\left(\left\{a_{1}, \ldots, a_{k}\right\}\right)=0
$$

Therefore, $\eta(A \times B)=\rho(A \times B)+\underbrace{\xi(A \times B)}_{0}=\rho(A \times B)=\mu(A) \nu(B)$.

Case 2. If $\mu(A)=\infty$ and $\nu(B)>0$, then $\rho(A \times B)=\mu(A) \nu(B)=\infty$. Therefore,

$$
\eta(A \times B)=\underbrace{\rho(A \times B)}_{\infty}+\underbrace{\xi(A \times B)}_{\geq 0}=\underbrace{\rho(A \times B)}_{\infty}=\mu(A) \nu(B) .
$$

Case 3. If $\mu(A)=\infty$ and $\nu(B)=0$, then $\rho(A \times B)=\mu(A) \nu(B)=0$. It holds that

$$
f^{-1}[\Delta \cap(A \times B)] \subseteq f^{-1}[\Delta \cap(\mathbb{R} \times B)]=B \cap[0,1]
$$

By monotonicity of measure,

$$
\xi(A \times B)=\nu\left(f^{-1}[\Delta \cap(A \times B)]\right) \leq \nu(B \cap[0,1]) \leq \nu(B)=0 .
$$

Thus, $\eta(A \times B)=\rho(A \times B)+\xi(A \times B)=0=\mu(A) \nu(B)$.

Therefore, η is indeed a product measure.
Furthermore, $\eta(\Delta)=\rho(\Delta)+\xi(\Delta)=0+1=1$. However, $\eta(\Delta+1)=\rho(\Delta+1)+\xi(\Delta+1)=0+0=0$.

The Next Step

The next step

The proof of the construction of non-translation-invariant product measure also implies that there can be infinitely many product measures for a given product measure space. The result provided an example to the following problem.

The number of product measures
Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two measure spaces. Let $(X \times Y, \mathcal{A} \otimes \mathcal{B})$ be their product measurable space.
Then, prove or disprove that the number of product measures on $\mathcal{A} \otimes \mathcal{B}$ is either one or infinite.

Thank you for your attention!

BIBLIOGRAPHY

是
David H. Fremlin. (2001) Measure Theory. Vol. 2. Colchester, UK: Torres Fremlin.
(David Ross (2013) Lecture notes: Transfinite induction for measure theory, https://math.hawaii.edu/~ross/ Math671/lecnotes_tfinduction.pdf, Last visited: 16 December 2022.

