The translation invariant product measure problem in non-sigma finite case

Author: Nicha Khenkhok Supervisor: Gábor Sági, PhD. May 23, 2022

ELTE EÖTVÖS LORÁND TUDOMÁNYEGYETEM

Introduction

PRODUCT MEASURE SPACE

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces. A product measure space is the space $X \times Y$ equipped with

- the σ -algebra $\mathcal{A} \otimes \mathcal{B}$ generated by the set $\{A \times B : A \in \mathcal{A}, B \in \mathcal{B}\},\$
- a product measure $\lambda : \mathcal{A} \otimes \mathcal{B} \to \mathbb{R}_0^+$.

PRODUCT MEASURE

A measure $\lambda : \mathcal{A} \otimes \mathcal{B} \to \mathbb{R}_0^+$ is a product measure of μ and ν if for all $A \times B$, where $A \in \mathcal{A}$ and $B \in \mathcal{B}$,

 $\lambda(A \times B) = \mu(A)\nu(B).$

Introduction	Preliminary Check	The Answer	The Proof 000000000	The Next Step

DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Disclaimer: product measure is not necessarily unique. Let $E \in \mathcal{A} \otimes \mathcal{B}$, we define The primitive product measure:

$$\pi(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) \nu(B_n) : \mathcal{A}_n \in \mathcal{A}, B_n \in \mathcal{B}, E \subseteq \bigcup_{n=1}^{\infty} A_n \times B_n \right\}.$$

The completely locally determined (c.l.d) product measure:

 $\rho(E) = \sup \left\{ \pi(E \cap (A \times B)) : \mathcal{A} \in \mathcal{A}, B \in \mathcal{B}; \mu(A), \nu(B) < \infty \right\}.$

Introduction	Preliminary Check	The Answer	The Proof	The Next Step

DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Suppose that

- X, Y = [0, 1];
- $\mathcal{A} = \text{Lebesgue } \sigma\text{-algebra}, \mathcal{B} = \mathcal{P}([0,1]);$
- $\mu = \text{Lebesgue measure}, \nu = \text{counting measure}.$

Consider the set $\Delta = \{(x, x) : x \in [0, 1]\}$ in $\mathcal{A} \otimes \mathcal{B}$

$$\Delta = \bigcap_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \left[\frac{k}{n}, \frac{k+1}{n} \right] \times \left[\frac{k}{n}, \frac{k+1}{n} \right]$$

Then, the primitive product measure gives $\pi(\Delta) = +\infty$ and the c.l.d measure gives $\rho(\Delta) = 0$.

Preliminary Check

Introduction	Preliminary Check ○●	The Answer	The Proof 0000000000	The Next Step
PRELIMI	VABY CHECK			

We need that any vertical translate B + c of B is in the product σ -algebra $\mathcal{A} \otimes \mathcal{B}$. Its proof utilises ideas from ...

Construction of a generated σ -algebra

Let *X* be a set and $\{\emptyset, X\} \subseteq C \subseteq \mathcal{P}(X)$ be a family of (generating) sets. Let α be an ordinal and λ be a limit ordinal. Define

1.
$$\mathcal{F}_{0} \coloneqq \mathcal{C}$$
;
2. $\mathcal{F}_{\alpha+1} \coloneqq \mathcal{F}_{\alpha} \cup \{\overline{F} : A \in \mathcal{F}_{\alpha}\} \cup \{\bigcup_{n \in \mathbb{N}} F_{n} : F_{n} \in \mathcal{F}_{\alpha}\}$ and
3. $\mathcal{F}_{\lambda} \coloneqq \bigcup_{\alpha < \lambda} F_{\alpha}$.

Then, \mathcal{F}_{ω_1} is the generated by \mathcal{C} .

The Answer

	The Answer	
	00	

THE ANSWER TO THE PROBLEM

THE MAIN RESULT

There exists a product measurable space $X \times \mathbb{R}$, $\mu \times \nu$ such that for some $c \in \mathbb{R}$ and some measurable set $B \in$, the vertical shift of Bby c results in a change in measure. That is, $\mu \times \nu(B) \neq \mu \times \nu(B+c)$.

We will construct a product measure, which utilises the c.l.d. measure.

The Proof

Introduction	Preliminary Check	The Answer	The Proof O●OOOOOOOO	The Next Step
	TION			

Let $\Delta = \{(x, x) : x \in [0, 1]\}$ as before. Recall that $\nu : \mathcal{B} \to [0, \infty]$ is the Lebesgue measure on the Borel . Define $f : [0, 1] \to [0, 1] \times [0, 1]$ to be

$$f(x) = (x, x),$$

which is a measurable function on [0,1]. Define the set function $\xi:\to [0,1]$ as

 $\xi(E) = \nu(f^{-1}[E \cap \Delta]).$

Introduction	Preliminary Check	The Answer OO	The Proof 000●000000	The Next Step

Claim: The set function ξ is a measure.

Proof. Trivially, $\xi(\emptyset) = 0$. We now check the σ -additivity property. Let $\{E_n\}_{n \in \mathbb{N}} \subseteq \mathcal{A} \otimes \mathcal{B}$ be a sequence of disjoint sets. Then,

$$\xi\left(\bigcup_{n=0}^{\infty} E_n\right) = \nu\left(f^{-1}\left[\bigcup_{n=0}^{\infty} E_n \cap \Delta\right]\right) = \nu\left(f^{-1}\left[\bigcup_{n=0}^{\infty} (E_n \cap \Delta)\right]\right)$$
$$= \nu\left(\bigcup_{n=0}^{\infty} f^{-1}[E_n \cap \Delta]\right) = \sum_{n=0}^{\infty} \nu\left(f^{-1}[E_n \cap \Delta]\right)$$
$$= \sum_{n=0}^{\infty} \xi(E_n).$$

PROOF OF THE MAIN RESULT

THE MAIN RESULT

There exists a product measurable space $X \times \mathbb{R}$, $\mu \times \nu$ such that for some $c \in \mathbb{R}$ and some measurable set $B \in$, the vertical shift of Bby c results in a change in measure. That is, $\mu \times \nu(B) \neq \mu \times \nu(B+c)$.

Proof. Recall that the c.l.d. product measure is denoted by ρ . Consider the set function $\eta : \mathcal{A} \otimes \mathcal{B} \rightarrow [0, \infty]$ given by

$$\eta(E) = \rho(E) + \xi(E).$$

Clearly, η is a measure on $\mathcal{A} \otimes \mathcal{B}$. We claim that η is a product measure.

Introduction 00000	Preliminary Check	The Answer OO	The Proof	The Next Step

Case 1. If $\mu(A) < \infty$ and $\nu(B) \le \infty$, then *A* has finitely many points since μ is a counting measure. So, $A = \{a_1, ..., a_k\}$ for some $k \in \mathbb{N}$. It holds that

$$A \times B = \{a_1, ..., a_k\} \times B \subseteq \{a_1, ..., a_k\} \times \mathbb{R} = A \times \mathbb{R},$$

and hence,

$$\Delta \cap (A \times B) \subseteq \Delta \cap (A \times \mathbb{R}) = \{(x, x) : x = a_1, ..., a_k\}.$$

Using monotonicity of measure,

$$\xi(A \times B) \le \xi(A \times \mathbb{R}) = \nu(f^{-1}[\Delta \cap (A \times \mathbb{R})]) = \nu(\{a_1, ..., a_k\}) = 0.$$

Therefore, $\eta(A \times B) = \rho(A \times B) + \underbrace{\xi(A \times B)}_{0} = \rho(A \times B) = \mu(A)\nu(B).$

Introduction	Preliminary Check	The Answer OO	The Proof ○○○○○○○●○○	The Next Step

Case 2. If $\mu(A) = \infty$ and $\nu(B) > 0$, then $\rho(A \times B) = \mu(A)\nu(B) = \infty$. Therefore,

$$\eta(A \times B) = \underbrace{\rho(A \times B)}_{\infty} + \underbrace{\xi(A \times B)}_{\geq 0} = \underbrace{\rho(A \times B)}_{\infty} = \mu(A)\nu(B).$$

Case 3. If $\mu(A) = \infty$ and $\nu(B) = 0$, then $\rho(A \times B) = \mu(A)\nu(B) = 0$. It holds that

$$f^{-1}[\Delta \cap (A \times B)] \subseteq f^{-1}[\Delta \cap (\mathbb{R} \times B)] = B \cap [0, 1]$$

By monotonicity of measure,

 $\xi(A\times B)=\nu(f^{-1}[\Delta\cap (A\times B)])\leq \nu(B\cap [0,1])\leq \nu(B)=0.$

Thus, $\eta(A \times B) = \rho(A \times B) + \xi(A \times B) = 0 = \mu(A)\nu(B)$.

Introduction	Preliminary Check	The Answer OO	The Proof	The Next Step

Therefore, η is indeed a product measure. Furthermore, $\eta(\Delta) = \rho(\Delta) + \xi(\Delta) = 0 + 1 = 1$. However, $\eta(\Delta + 1) = \rho(\Delta + 1) + \xi(\Delta + 1) = 0 + 0 = 0$.

The Next Step

Introduction 00000	Preliminary Check	The Answer	The Proof	The Next Step O●OO
THE NEXT	STEP			

The proof of the construction of non-translation-invariant product measure also implies that there can be infinitely many product measures for a given product measure space. The result provided an example to the following problem.

THE NUMBER OF PRODUCT MEASURES

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two measure spaces. Let $(X \times Y, \mathcal{A} \otimes \mathcal{B})$ be their product measurable space. Then, prove or disprove that the number of product measures on $\mathcal{A} \otimes \mathcal{B}$ is either one or infinite.

Introduction 00000	Preliminary Check	The Answer	The Proof	The Next Step ○○●○

Thank you for your attention!

Introduction	Preliminary Check	The Answer	The Proof	The Next Step ○○○●
During				

David H. Fremlin. (2001) Measure Theory. Vol. 2. Colchester, UK: Torres Fremlin.

David Ross (2013) Lecture notes: Transfinite induction for measure theory, https://math.hawaii.edu/~ross/ Math671/lecnotes_tfinduction.pdf, Last visited: 16 December 2022.