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PRODUCT MEASURE SPACE

Let (X,A, µ) and (Y,B, ν) be measure spaces.
A product measure space is the space X × Y equipped with

• the σ-algebra A⊗B generated by the set {A × B : A ∈ A,B ∈ B},

• a product measure λ : A⊗ B → R+
0 .

PRODUCT MEASURE

A measure λ : A⊗ B → R+
0 is a product measure of µ and ν if for all

A × B, where A ∈ A and B ∈ B,

λ(A × B) = µ(A)ν(B).
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DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Disclaimer: product measure is not necessarily unique. Let
E ∈ A⊗ B, we define
The primitive product measure:

π(E) = inf

{ ∞∑
n=1

µ(An)ν(Bn) : An ∈ A,Bn ∈ B,E ⊆
∞⋃

n=1

An × Bn

}
.

The completely locally determined (c.l.d) product measure:

ρ(E) = sup {π(E ∩ (A × B)) : A ∈ A,B ∈ B;µ(A), ν(B) < ∞} .
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DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Suppose that

• X,Y = [0, 1];

• A = Lebesgue σ-algebra, B = P([0, 1]);

• µ = Lebesgue measure, ν = counting measure.

Consider the set ∆ = {(x, x) : x ∈ [0, 1]} in A⊗ B

∆ =

∞⋂
n=1

∞⋃
k=1

[
k
n
,

k + 1
n

]
×
[

k
n
,

k + 1
n

]
Then, the primitive product measure gives π(∆) = +∞ and the c.l.d
measure gives ρ(∆) = 0.
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INTRODUCTION

+ c

(R,B, ν)

(X,A, µ)

∈ A⊗ BB

B + c

Let the product measure space
(X × R,A⊗ B, µ× ν) and a set B ∈ A⊗ B be given.

For any c ∈ R, define
B + c :− {(x, y + c) : (x, y) ∈ B} ∈ A ⊗ B.

Is it true that µ× ν (B + c) = µ× ν (B) ?

W
ith

Le
be

sg
ue

m
ea

su
re

ν
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PRELIMINARY CHECK

We need that any vertical translate B + c of B is in the product
σ-algebra A⊗ B. Its proof utilises ideas from ...

CONSTRUCTION OF A GENERATED σ-ALGEBRA

Let X be a set and {∅,X} ⊆ C ⊆ P(X) be a family of (generating)
sets. Let α be an ordinal and λ be a limit ordinal. Define

1. F0 := C;

2. Fα+1 := Fα ∪
{

F : A ∈ Fα

}
∪
{⋃

n∈N Fn : Fn ∈ Fα

}
and

3. Fλ :=
⋃
α<λ

Fα.

Then, Fω1 is the generated by C.

5



The Answer



Introduction Preliminary Check The Answer The Proof The Next Step

THE ANSWER TO THE PROBLEM

THE MAIN RESULT

There exists a product measurable space X × R, , µ× ν such that
for some c ∈ R and some measurable set B ∈, the vertical shift of B
by c results in a change in measure. That is, µ× ν(B) ̸= µ× ν(B+ c).

We will construct a product measure, which utilises the c.l.d.
measure.

6



The Proof



Introduction Preliminary Check The Answer The Proof The Next Step

PREPARATION

Let ∆ = {(x, x) : x ∈ [0, 1]} as before. Recall that ν : B → [0,∞] is the
Lebesgue measure on the Borel . Define f : [0, 1] → [0, 1]× [0, 1] to be

f (x) = (x, x),

which is a measurable function on [0, 1]. Define the set function
ξ :→ [0, 1] as

ξ(E) = ν(f−1[E ∩∆]).
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[0, 1]

[0
, 1
]

ξ(E) = ν
(
f−1(E ∩∆)

)
Lebesgue measure of the preimage

E ∩
∆
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Claim: The set function ξ is a measure.

Proof. Trivially, ξ(∅) = 0. We now check the σ-additivity property. Let
{En}n∈N ⊆ A⊗ B be a sequence of disjoint sets. Then,

ξ

( ∞⋃
n=0

En

)
= ν

(
f−1

[ ∞⋃
n=0

En ∩∆

])
= ν

(
f−1

[ ∞⋃
n=0

(En ∩∆)

])

= ν

( ∞⋃
n=0

f−1[En ∩∆]

)
=

∞∑
n=0

ν
(
f−1[En ∩∆]

)
=

∞∑
n=0

ξ(En). ■
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PROOF OF THE MAIN RESULT

THE MAIN RESULT

There exists a product measurable space X × R, , µ× ν such that
for some c ∈ R and some measurable set B ∈, the vertical shift of B
by c results in a change in measure. That is, µ× ν(B) ̸= µ× ν(B+ c).

Proof. Recall that the c.l.d. product measure is denoted by ρ.
Consider the set function η : A⊗ B → [0,∞] given by

η(E) = ρ(E) + ξ(E).

Clearly, η is a measure on A⊗ B. We claim that η is a product
measure.
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Case 1. If µ(A) < ∞ and ν(B) ≤ ∞, then A has finitely many points
since µ is a counting measure. So, A = {a1, ..., ak} for some k ∈ N. It
holds that

A × B = {a1, ..., ak} × B ⊆ {a1, ..., ak} × R = A × R,

and hence,

∆ ∩ (A × B) ⊆ ∆ ∩ (A × R) = {(x, x) : x = a1, ..., ak}.

Using monotonicity of measure,

ξ(A × B) ≤ ξ(A × R) = ν(f−1[∆ ∩ (A × R)]) = ν({a1, ..., ak}) = 0.

Therefore, η(A × B) = ρ(A × B) + ξ(A × B)︸ ︷︷ ︸
0

= ρ(A × B) = µ(A)ν(B).
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(R,B, ν)

([0, 1],B, µ)

A × B

∆

Case 1
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Case 2. If µ(A) = ∞ and ν(B) > 0, then ρ(A × B) = µ(A)ν(B) = ∞.
Therefore,

η(A × B) = ρ(A × B)︸ ︷︷ ︸
∞

+ ξ(A × B)︸ ︷︷ ︸
≥0

= ρ(A × B)︸ ︷︷ ︸
∞

= µ(A)ν(B).

Case 3. If µ(A) = ∞ and ν(B) = 0, then ρ(A × B) = µ(A)ν(B) = 0. It
holds that

f−1[∆ ∩ (A × B)] ⊆ f−1[∆ ∩ (R× B)] = B ∩ [0, 1]

By monotonicity of measure,

ξ(A × B) = ν(f−1[∆ ∩ (A × B)]) ≤ ν(B ∩ [0, 1]) ≤ ν(B) = 0.

Thus, η(A × B) = ρ(A × B) + ξ(A × B) = 0 = µ(A)ν(B).

13



Introduction Preliminary Check The Answer The Proof The Next Step

(R,B, ν)

([0, 1],B, µ)

A × B

∆Case 3

...

14



Introduction Preliminary Check The Answer The Proof The Next Step

Therefore, η is indeed a product measure.
Furthermore, η(∆) = ρ(∆) + ξ(∆) = 0 + 1 = 1. However,
η(∆ + 1) = ρ(∆ + 1) + ξ(∆ + 1) = 0 + 0 = 0. ■
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THE NEXT STEP

The proof of the construction of non-translation-invariant product
measure also implies that there can be infinitely many product
measures for a given product measure space. The result provided an
example to the following problem.

THE NUMBER OF PRODUCT MEASURES

Let (X,A, µ) and (Y,B, ν) be two measure spaces. Let
(X × Y,A⊗ B) be their product measurable space.
Then, prove or disprove that the number of product measures on
A⊗ B is either one or infinite.
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Thank you for your attention!
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