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Abstract

During my directed studies, I learned the basics of symplectic geometry and geometric quantization. More-
over, I have partially read an article, which is related to polarizations arising in geometric quantization, containing
a theorem about the existence of local polarizations. With the help of my supervisor, I managed to show an
example of global polarization.

1 Symplectic geometry

Symplectic geometry is the mathematical framework describing classical mechanical systems. This section serves
as a summary of the basic principles I needed for this semester. I learned these concepts from a book by John M.
Lee called Introduction to Smooth Manifolds [1].

Definition 1.1 (Symplectic manifold). (M,ω) is a symplectic manifold if M is a smooth real manifold equipped
with a closed non-degenerate two-form ω, called the symplectic form.

Example 1.1 (R2n is a symplectic manifold). Consider a point p ∈ R2n, and we know that TpR2n ∼= R2n. Consider
basis vectors {xi, yi}ni=1 and the 2-form defined pointwise by

ωp(xi, yi) = ωp(yi, xi) = δij , (1)

ωp(xi, xj) = ωp(yi, yj) = 0 (2)

is a symplectic form. The standard symplectic form is defined by

ωp =

n∑
i=1

dxi ∧ dyi, (3)

and it can easily be verified that this is closed and non-degenerate.

Example 1.2. Any 2-dimensional smooth orientable manifold with a non-vanishing 2-form ω is a symplectic
manifold since dω is a 3-form.

In this report, the cotangent bundle is the most important example of a symplectic manifold:

Example 1.3 (Cotangent bundle). Considering a smooth n-dimensional real manifold Q, the cotangent bundle
T ∗Q is a 2n-dimensional symplectic manifold. Considering an open set U ∈ Q and corresponding coordinate charts
qk : U → Rn, we have a a corresponding coordinate system (qk, pk) : V → R2n, where V is an open set on T ∗Q.
Then let

θ|U =

n∑
k=1

pkdq
k, (4)

which is called the tautological one-form or symplectic potential, and then

ω|U = dθ|U =

n∑
k=1

dpk ∧ dqk, (5)

and hence dω|U = 0.
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The non-degeneracy condition of ω yields an isomorphism between the tangent and the cotangent spaces of a
symplectic manifold M at x ∈M . Given a basis vector v ∈ TxM , we can define

TxM ∋ v 7→ ω(v, ·) ∈ T ∗
xM. (6)

Moreover, this can be extended to an isomorphism between TM and T ∗M and hence between vector fields and
one-forms on M with

X 7→ ω(X, ·) ∈ Ω1(M), (7)

where X is a vector field. This means, that for each f ∈ C∞(M) one can define a vector field Xf by

df = −ω(Xf , ·). (8)

Xf is called Hamiltonian vector field of f .
The Lie bracket [·, ·] of two Hamiltonian vector fields is also a Hamiltonian vector field given by

[Xf , Xg] = Xω(f,g), (9)

which connects the symplectic form with Lie brackets.
When dealing with classical mechanical systems, one often considers certain submanifolds of symplectic mani-

folds.

Definition 1.2 (Isotropic subspace). A subspace (V, ω|V ) of a symplectic vector space (W,ω) is called isotropic
when ω|V ≡ 0.

Remark. Such subspace can have a dimension 1
2 dimW , because ω is non-degenerate.

Definition 1.3 (Lagrangian subspace). An isotropic subspace with maximal dimension (maximally isotropic sub-
space) is called a Lagrangian subspace.

A very similar definition can be given for symplectic manifolds:

Definition 1.4 (Lagrangian submanifold). A submanifold N of a symplectic manifold (M,ω) is called a La-
grangian submanifold if ω|N ≡ 0.

Example 1.4. Consider a manifold Q. Then Q is a Lagrangian submanifold of T ∗Q.

Locally, any Lagrangian submanifold is given by n functions {Fk}ni=1 such that

ω(XFk
, XFl

) = 0, where k, l = 1, . . . , n. (10)

When the functions {Fk}ni=1 satisfy this property, it is said that they are in involution.

2 Geometric quantization

Geometric quantization is a framework in modern physics which aims to associate a quantum system with a given
classical system [2]. This procedure relies on several axioms, which prescribe how functions on a symplectic manifold
(classical observables) can be mapped to operators (quantum observables) on a Hilbert space. For our purposes,
considering the cotangent bundle as the symplectic manifold is enough. In this setup, quantization refers to an
assignment

Q : C∞(M) → (H → H), (11)

where M = T ∗Q is the cotangent bundle of a smooth manifold Q and H is a Hilbert space. In classical mechanics,
Q is usually referred to as configuration space and T ∗Q as phase space. The quantization axioms are [2, Section 3]:

• Q1: R-linearity,
Q(rf + g) = rQ(f) +Q(g), ∀r ∈ R, f, g ∈ C∞(T ∗M). (12)

• Q2: Unitality (identity-preserving),

Q(1) = 1, where 1 is the identity operator on H. (13)
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• Q3: Hermitian,
Q(f)∗ = Q(f). (14)

• Q4: The quantum condition,
[Q(f),Q(g)] = −iℏQ(ω(f, g)), (15)

where ℏ is the Planck constant.

• Q5: If {fi}ni=1 is a complete set of classical observables, then {Q(fi)}ni=1 is a complete set of quantum
observables. For this axiom, we need the following two definitions:

Definition 2.1 (Complete set of classical observables). Let Q be a smooth manifold and M := T ∗Q. A set
of classical observables {fi}ni=1, fi ∈ C∞(M) are complete if any f ∈ C∞(M) with

ω(f, fi) = 0, ∀i = 1, . . . , n, (16)

is a constant function.

Definition 2.2 (Complete set of quantum observables). A set of quantum observables is complete if any
operator commuting with all of them is a multiple of the identity operator

The problem with these axioms is that Q4 and Q5 cannot be simultaneously true. However, it is “satisfactory”
if these axioms are true for physically relevant observables, like p2. Hence, we can restrict the algebra of classical
observables (C∞(M), ω) to a subalgebra, containing only the physically relevant ones.

The idea is to try to associate functions on the phase space to its Hamiltonian vector field, i.e. one could define

Q(f) = −iℏXf − θ(Xf ) + f, (17)

which satisfies Q1-Q4, and here the Hilbert space is L2(M,ω). The problem with this approach is that it fails to
satisfy Q5 and fails to reproduce observables quadratic in p.

In the cotangent bundle, the tautological one-form θ is globally defined. When defining Q above, we could also
have chosen θ + dg for some function g on M instead of θ in (17). One can compensate for this by multiplying
functions onM by the phase factor exp(ig/ℏ), but this could not be performed on the real-valuedM . This suggests
to regard Q(f) as operators acting on a trivial complex line bundle L overM equipped with a connection D defined
by

D := d− i

ℏ
θ, (18)

and transition functions exp(−i/ℏ).
Now the Hilbert space is the square-integrable functions on the sections of the complex line bundle L, and we

can think of quantum-mechanical wave functions as sections of L. However, the problem with the resulting Hilbert
space is that it is “too large”, since e.g. in the Schrödinger picture of quantum mechanics, the wave functions
only depend on coordinates of Q, which is a Lagrangian submanifold. Motivated by this, we need to restrict these
functions to a certain Lagrangian submanifold. Hence, considering ψ a section of L, we need to search for sections
X of a subbundle P ⊂ TMC such that they are covariantly constant along X, i.e.,

D(X)ψ = 0, (19)

which implies that
[D(X), D(Y )]ψ = 0, ∀X,Y section of P. (20)

The curvature of L Ω can be calculated by using (18):

Ω(X,Y ) = i([D(X), D(Y )]−D([X,Y ])) =
1

ℏ
ω(X,Y ). (21)

Hence, the condition (20) can be written as(
D([X,Y ])− i

ℏ
ω(X,Y )

)
ψ = 0, ∀X,Y section of P. (22)

which is automatically satisfied if [X,Y ] is also a section of P (P is an integrable subbundle) and ω(X,Y ) = 0
(Lagrangian subbundle).

Therefore, in geometric quantization one is interested in certain subbundles of TMC, these are called polariza-
tions [2, Section 5.1]:
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Definition 2.3 (Polarization). Let (M,ω) be a symplectic manifold. A polarization P of (M,ω) is an integrable
Lagrangian subbundle of the complexified tangent bundle TMC.

However, the problem is that the quantization function Q does not preserve this property. A function f ∈
C∞(M) is called quantizable when for all ψ covariantly constant along a polarization P , then Q(f)ψ is also
covariantly constant. However, even the simple observable p2 is not quantizable. There is a way around this
called the Blattner-Kostant-Sternberg construction [2, Section 6.1], but this construction is not well understood.

3 Involutive structures

Polarizations in geometric quantization are called involutive structures in differential geometry. Lempert investi-
gated these involutive structures and found a condition for the local existence of involutive structures [3], and the
results presented in this section are from this research. The main objective of our investigation is to find examples
of global involutive structures. For this, we need the following definition:

Definition 3.1 (Involutive structure). An involutive structure on a smooth manifold N is a smooth subbundle
P ⊂ CTN = C⊗R TN that is involutive in the sense that the Lie bracket of its (smooth, local) sections is again a
section.

Example 3.1. A CR (Cauchy-Riemann) manifold M is a differentiable manifold together with a subbundle L ⊂
C⊗R TM such that

[L,L] ⊆ L, (involutivity, or integrability) (23)

L ∩ L = {0}, (24)

and this subbundle is also called a CR structure.

Example 3.2 (Complex structure). Involutive structure with P⊕P = CTN is a complex structure, P corresponding
to (1, 0)-vectors. 1

Certain manifolds admitting these structures are called involutive manifolds:

Definition 3.2 (Involutive manifold). An involutive manifold is a smooth manifold N endowed with an involutive
structure P and is denoted by (N,P ).

Remark. The involutive structure is very similar to the CR structure, only the (24) is omitted. Note, that this
condition is equivalent to the definition given by 2.3.

Definition 3.3 (Involutive map). Suppose (N,P ) and (M,Q) are involutive manifolds. Then an involutive map
is a C1 map f where

f∗Q ⊂ P. (25)

The following Lemma [3, Lemma 3.1] is concerned about involutive structures and smooth maps:

Lemma 3.1. Let X,Y be smooth manifolds, P ⊂ CTX, Q ⊂ CTY and a smooth map ϕ : X → Y such that
Px = ϕ−1

∗ Qϕ(x). Then if Q is involutive, P is also involutive.

Now assume we are given complex manifolds C,Z and a smooth map ϵ : N × C → Z such that ϵx = ϵ(x, ·) is
holomorphic for all x ∈ N . In the article of Lempert [3], a certain symmetry of geodesics is also accounted for,
but this part is not needed for this work and is omitted for brevity. Given such map ϵ, the following theorem [3,
Theorem 3.4] can be shown:

Theorem 1. Let c ∈ C and ψ = ψc = ϵ(·, c) : N → Z. If P = P (c) = ψ−1
∗ T 1,0Z ⊂ CTN is a subbundle, then it is

an involutive structure.

This theorem gives an involutive structure locally, using certain analyticity assumptions.
We are concerned with the following example during our investigations [3, Example 4.2]:

1(1, 0)-vectors are vectors annihilating all anti-holomorphic functions. Conversely, (0, 1)-vectors annihilate holomorphic functions.
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Example 3.3. We consider first-order ODEs (vector fields) and let Q be a n-dimensional manifold. Let π : TQ→ Q
be the bundle projection. Let N consist of trajectories of a fixed real analytic vector field ξ on TQ. We also know
that

π∗ξ(x) = x. (26)

If U is an open subset of Q such that TU ∼= U × Rn, then a vector field ξ on TU can be written as

ξ(q, p) = (q, F (q, p)), (27)

where F : TU → Rn. This means that the trajectories must be solutions to the second-order ODE

q̈ = F (q, q̇), (28)

which also means that the trajectories are in one-to-one correspondence with TQ.
One can complexify this setup to acquire

πC : TQC → QC (29)

and a holomorphic vector field ξC such that Q,TQ are maximally real, analytic submanifolds of QC, TQC, πC|TQ = π
and 2Re ξC|TQ = ξ.

Now let C be a connected, simply connected, bounded neighbourhood of 0 ∈ C and let ϵ > 0 be such that the
trajectories x : (−ϵ, ϵ) → TQ extend to C̄, and call the sets of these trajectories N . Let us denote this extension
x ∈ N by x̃. Then if x ∈ N is a trajectory of the vector field ξ, then x̃ is a trajectory of the holomorphic vector field
ξC. By identifying all x ∈ N by x(0), N can be identified by an open subset of TM .

Fix c ∈ C and define

ψ = ψc : N → QC (30)

x 7→ x̃(c). (31)

For Theorem 1 to apply, it has to be shown that ψ−1
∗ T 10QC is really a subbundle:

Proposition 3.1. ψ−1
∗ T 10QC ⊂ CTN is a subbundle.

Example provides a construction where involutive structures are local. We want to show examples, where it is
not only local but global. The reason for doing this is that polarizations defined from local complex structures may
be intractable in general. Dropping condition of demanding the involutive bundle to define a complex structure
pointwise and only requiring a global polarization to exist, we may have more

The idea is to search global involutive structures in well-studied classical mechanical systems. However, instead
of using the tangent bundle TQ, we will use the cotangent bundle M := T ∗Q, which naturally has a symplectic
structure (see 1.3), however, the tangent bundle may not always be symplectic.

3.1 Global involutive structure of the complexified harmonic oscillator

Consider a real analytic manifold Q and its cotangent space M := T ∗Q ∼= R2. Let us define the Hamiltonian
function H ∈ C∞(M) of the harmonic oscillator as

H(q, p) =
1

2
(q2 + p2). (32)

The Hamiltonian vector field XH (ξ in Lempert’s article) is

XH(q, p) = p∂q − q∂p (33)

Trajectories will be integral curves of this vector field. Consider (q0, p0) ∈M . We can solve the Hamilton equations
to acquire the unique trajectory from this point, which is of the form

x(t) = (p0 sin t+ q0, p0 cos t). (34)

To define ψ(x) = πC(x̃(i)) as in Example 3, we define the holomorphic extension of M as MC ∼= C2 and πC :MC →
QC, since x̃ is the trajectory corresponding to HC. The complexification of H is given by

HC(z1, z2) =
1

2
(z21 + z22), (35)
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where we can similarly calculate the corresponding Hamiltonian vector field

XC
H(z1, z2) = z2∂z1 − z1∂z2 , (36)

and one can easily verify that 2ReXC
H = XH indeed. The complexified trajectories are the integral curves corre-

sponding to XC
H , which are given by

∂wz1(w) = z2(w), (37)

∂wz2(w) = −z1(w). (38)

The trajectories in the complexified space will be

x̃(c) = (z2 sin c+ z1, z2 cos c) (39)

and hence
ψc(x) = πC(x̃(c)) = πC(z2 sin c+ z1, z2 cos c) = z2 sin c+ z1 ∈MC. (40)

and then
ψi(x) = z1 + iz2 sinh(1). (41)

Now we need to determine the pushforward ψ∗ : TN → MC, consider v ∈ T(a,b)M and write v = α∂q + β∂p.
Consider a path χ : R → N such that

χ(s) = (a+ sα, b+ sβ) ∈ N, (42)

we know that χ(0) = (a, b) and χ′(0) = v = (α, β). The pushforward is

(ψ∗v)(a,b) =
d

ds
ψ(χ(s))|s=0 =

d

ds
(a+ sα+ i(b+ sβ) sinh(1)) |s=0 = α+ iβ sinh(1) = α∂q + β sinh(1)∂ηq

. (43)

For this to be holomorphic, we need that

ψ∗((v1 + iw1)∂q + (v2 + iw2)∂p) = (v1 + iw1)∂q + (v2 + iw2) sinh(1)∂ηq

!
=

1

2
ξ∂q −

i

2
ξ∂ηq

(44)

=⇒ (v1 + iw1) = i(v2 + iw2) sinh(1) (45)

=⇒ v1 = −w2 sinh(1), w1 = v2 sinh(1), (46)

which yields that
P = {sinh(1)z∂q − iz∂p : z ∈ C} (47)

is a global involutive structure (polarization).
It turned out, that a global polarization can be acquired easier if one considers that ψ is a diffeomorphism,

since then the subbundle T 10MC can be defined as the involutive structure using this diffeomorphism. Given
(q, p) ∈M ∼= R2, ψ : R2 → C

ψi((q, p)) = q + ip sinh(1), (48)

which is clearly bijective and differentiable with the differentiable inverse.
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