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1 Abstract
The conjugate gradient method (CGM) is a widespread way to find the solution of dis-
cretized elliptic partial differential equations iteratively. Furthermore, the preconditioned
CGM can be competitive with multigrid methods and, under certain conditions, operator
preconditioning can provide mesh-independent superlinear convergence. This project con-
siders a self-adjoint second-order elliptic boundary value problem with variable zeroth order
coefficient and its finite element discretization. We study the mesh-independent superlinear
convergence of the preconditioned CGM for this type of problem see e.g [8], [3], and extend
previous results of [8] to the case of unbounded reaction coefficients in some Lebesgue spaces.
Our goal is to find an eigenvalue-based estimation of the rate of superlinear convergence and
to show that a similar estimation can be obtained in the case of systems of PDEs.

2 General framework
Let 𝐻 be a real separable Hilbert space and let us consider a linear operator equation

𝐵𝑢 = 𝑔 (1)

with some 𝑔 ∈ 𝐻, under the following assumptions

(i) The operator 𝐵 is decomposed as
𝐵 = 𝑆 +𝑄 (2)

where 𝑆 is a symmetric operator in 𝐻 with dense domain 𝐷 and 𝑄 is a compact
self-adjoint operator defined on the domain 𝐻.

(ii) There exists 𝑘 > 0 such that ⟨𝑆𝑢, 𝑢⟩ ≥ 𝑘 ∥𝑢∥2, 𝑢 ∈ 𝐷.

(iii) ⟨𝑄𝑢, 𝑢⟩ ≥ 0, 𝑢 ∈ 𝐷.

We recall that the energy space 𝐻𝑆 is the completion of 𝐷 under the energy inner product

⟨𝑢, 𝑣⟩𝑆 = ⟨𝑆𝑢, 𝑣⟩ (3)

, and the corresponding norm is denoted by ∥ · ∥𝑆. Assumption (𝑖𝑖) implies 𝐻𝑆 ⊂ 𝐻. Then,
there exists a unique operator denoted by 𝑄𝑆 : 𝐻𝑆 ↦→ 𝐻𝑠 such that

⟨𝑄𝑆𝑢, 𝑣⟩𝑆 = ⟨𝑄𝑢, 𝑣⟩

for all 𝑢, 𝑣 ∈ 𝐻𝑆.
We replace equation (1) by its formally preconditioned form (𝐼 + 𝑆−1𝑄)𝑢 = 𝑆−1𝑔 in 𝐻𝑆.

This is equivalent to the weak formulation

⟨(𝐼 +𝑄𝑆)𝑢, 𝑣⟩𝑆 = ⟨𝑔, 𝑣⟩, ∀𝑣 ∈ 𝐻𝑠 . (4)

Since by assumption (𝑖𝑖𝑖) the bilinear form on the left is coercive on 𝐻𝑆, by the Lax-Milgram
theorem, there exists a unique solution 𝑢 ∈ 𝐻𝑆 of (4).

Now equation (4) is solved numerically using a Galerkin discretization.
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Construction of the discretization. Let 𝑉 = span{𝜑1, . . . , 𝜑𝑛} ⊂ 𝐻𝑆 be a given
finite-dimensional subspace,

S = {⟨𝜑𝑖, 𝜑 𝑗 ⟩𝑆}𝑛𝑖, 𝑗=1 and Q = {⟨𝑄𝜑𝑖, 𝜑 𝑗 ⟩}𝑛𝑖, 𝑗=1
the Gram matrices corresponding to 𝑆 and 𝑄. We look for the numerical solution 𝑢𝑉 ∈ 𝑉 of
equation (4) in 𝑉 , i.e., for which

⟨(𝐼 +𝑄𝑆)𝑢𝑣, 𝑣⟩𝑆 = ⟨𝑔, 𝑣⟩, ∀𝑣 ∈ 𝑉. (5)

Then 𝑢𝑉 =
∑𝑛

𝑖, 𝑗=1 𝑐 𝑗𝜑 𝑗 , where c = (𝑐1, . . . , 𝑐𝑛) ∈ R𝑛 is the solution of the system

(S +Q)c = b (6)

with b = {⟨𝑔, 𝜑 𝑗 ⟩}𝑛𝑗=1 depending on 𝑉 . The matrix 𝑩 := S +Q is SPD.
By using matrix S as the preconditioner for the system (6), we shall work with the

preconditioned system
(I + S−1Q)c = b̃, (7)

where b̃ = S−1b and I is the identity matrix in R𝑛. Then we apply the CGM for the solution
of this new system.

Preconditioned conjugate gradient method algorithms. The method is given by
the following algorithm: Let 𝑢0 ∈ 𝐻 arbitrary, 𝜌0 = B𝑢0 − 𝑔, S𝑝0 = 𝜌0, 𝑟0 = 𝜌0 and for 𝑘 ∈ N

𝑢𝑘+1 = 𝑢𝑘 + 𝛼𝑘 𝑝𝑘 ,

𝑟𝑘+1 = 𝑟𝑘 + 𝛼𝑘S
−1B𝑝𝑘 ,

𝑝𝑘+1 = 𝑟𝑘+1 + 𝛽𝑘 𝑝𝑘

with

𝛼𝑘 =
−∥𝑟𝑘 ∥2S

⟨B𝑝𝑘 , 𝑝𝑘⟩
, 𝛽𝑘 =

∥𝑟𝑘+1∥2S
∥𝑟𝑘 ∥2S

.

Note that it is not necessary to compute the inverse of S. Instead, we solve the auxiliary
problem {

S𝑧𝑘 = B𝑝𝑘

𝑟𝑘+1 = 𝑟𝑘 + 𝛼𝑘 𝑧𝑘 .

By setting 𝑤𝑘 = 𝑧𝑘 − 𝑝𝑘 , the previous system is equivalent to{
S𝑤𝑘 = Q𝑝𝑘 ,

𝑟𝑘+1 = 𝑟𝑘 + 𝛼𝑘 𝑧𝑘 .

The next step is to find superlinear convergence rates for the CGM. Let A = (I+S−1Q) and
E = S−1Q. Assume that 𝜆 𝑗 = 𝜆 𝑗 (A) are ordered according to |𝜆1−1| ≥ |𝜆2−1| ≥ · · · ≥ |𝜆𝑛−1|.
Then 𝜆 𝑗 (E) = 𝜆 𝑗 − 1 and the error vectors 𝑒𝑘 = 𝑐𝑘 − 𝑐 satisfy [1](

∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

)1/𝑘
≤ 2∥A−1∥

𝑘

𝑘∑︁
𝑗=1

|𝜆 𝑗 (S−1Q) |, 𝑘 = 1, 2, . . . , 𝑛. (8)

The following result allows us to give a convergence rate for the upper bound of (8)
through the eigenvalues of the operator 𝑄𝑆. This is a modification of Theorem 1 in [8] where
the square of eigenvalues was considered.
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Theorem 1. For any 𝑘 = 1, 2, . . . , 𝑛

𝑘∑︁
𝑗=1

|𝜆 𝑗 (S−1Q) | ≤
𝑘∑︁
𝑗=1

𝜆 𝑗 (𝑄𝑆), (9)

Proof. Let 𝜆𝑚 = 𝜆𝑚 (S−1Q). Let c𝑚 = (𝑐𝑚1 , . . . , 𝑐
𝑚
𝑛 ) ∈ R𝑛 be the corresponding eigenvectors.

Then
Qc𝑚 = 𝜆𝑚Sc

𝑚 (10)

for all 𝑚. Since S−1Q is self-adjoint with respect to the S−inner product, therefore all
eigenvalues 𝜆1, . . . , 𝜆𝑛 are real, counting with multiplicity. Furthermore, the corresponding
eigenvectors are orthogonal in R𝑛 with respect to the S−inner product. Let us choose them
such that they are also orthonormal:

S𝑐𝑚 · 𝑐𝑙 = 𝛿𝑚𝑙 , 𝑚, 𝑙 = 1, . . . , 𝑛,

where 𝛿𝑚𝑙 is the Kronecker delta.
Let 𝑢𝑚 =

∑𝑛
𝑖=1 𝑐

𝑚
𝑖
𝜑𝑖 ∈ 𝑉 , 𝑚 = 1, . . . , 𝑛. Then for all 𝑚, 𝑙 = 1, . . . , 𝑛 we have that

⟨𝑢𝑚, 𝑢𝑙⟩𝑆 =
𝑛∑︁

𝑖, 𝑗=1

⟨𝜑𝑖, 𝜑 𝑗 ⟩𝑆𝑐𝑚𝑖 𝑐𝑙𝑗 = S𝑐𝑚 · 𝑐𝑙 , (11)

hence (10) implies that 𝑢1, . . . , 𝑢𝑛 form an orthonormal basis in 𝑉 ⊂ 𝐻𝑆 with respect to the
𝐻𝑆-inner product. Then (10),(11) yield

Q𝑐𝑚 · 𝑐𝑙 = 𝜆𝑚𝛿𝑚𝑙 , 𝑚, 𝑙 = 1, . . . , 𝑛.

Hence, we obtain
⟨𝑄𝑆𝑢𝑚, 𝑢𝑙⟩𝑆 = 𝜆𝑚𝛿𝑚𝑙 , 𝑚, 𝑙 = 1, . . . , 𝑛. (12)

Using Corollary 3.3 of [7] and since 𝑄𝑆 is a positive compact self-adjoint operator on the
Hilbert space 𝐻𝑆, we have that

𝑛∑︁
𝑚=1

|⟨𝑄𝑆𝑢𝑚, 𝑢𝑚⟩𝑆 | ≤
𝑛∑︁

𝑚=1

𝑠 𝑗 (𝑄𝑆) =
𝑛∑︁

𝑚=1

𝜆 𝑗 (𝑄𝑆), (13)

where 𝑠 𝑗 (𝑄𝑆) are the singular values of 𝑄𝑆. Then, by (12) and (13) we arrive at

𝑛∑︁
𝑚=1

|𝜆𝑚 | =
𝑛∑︁

𝑚=1

|⟨𝑄𝑆𝑢𝑚, 𝑢𝑚⟩𝑆 | ≤
𝑛∑︁

𝑚=1

𝜆 𝑗 (𝑄𝑆).

□

An immediate consequence of this theorem is the following mesh-independent bound.
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Corollary 1. For any 𝑘 = 1, 2, . . . , 𝑛(
∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

)1/𝑘
≤ 2∥𝐴−1∥

𝑘

𝑘∑︁
𝑗=1

𝜆 𝑗 (𝑄𝑆), 𝑘 = 1, 2, . . . , 𝑛. (14)

Proof. By [2, Prop. 4.1] we are able to estimate ∥A∥ to obtain

∥(I + S−1Q)−1∥ ≤ ∥(𝐼 +𝑄𝑆)−1∥.

This, together with the previous result and (8) completes the proof. □

Since |𝜆1(𝑄𝑆) | ≥ |𝜆2(𝑄𝑆) | ≥ · · · ≥ 0 and the eigenvalues tend to 0, the convergence factor
is less than 1 for 𝑘 sufficiently large. Hence the upper bound decreases as 𝑘 → ∞ and we
obtain superlinear convergence rate.

3 The main results
Let 𝑑 ≥ 2, 𝑝 > 2 and Ω ⊂ R𝑑 be a bounded domain. We consider the elliptic problem{

−div(𝐺∇𝑢) + 𝜂𝑢 = 𝑔,

𝑢 |𝜕Ω = 0,
(15)

under the standard assumptions listed below. We shall focus on the case when the principal
part has constant or separable coefficients, i.e.,

𝐺 (𝑥) ≡ 𝐺 ∈ R𝑑 × R𝑑 or 𝐺 (𝑥) ≡ diag{𝐺𝑖 (𝑥𝑖)}𝑁𝑖=1

whereas 𝜂 = 𝜂(𝑥) is a general variable (i.e. nonconstant) coefficient. Let problem (15) satisfy
the following assumptions:

(i) The symmetric matrix-valued function 𝐺 ∈ L∞(Ω,R𝑑 × R𝑑) satisfies

𝐺 (𝑥)𝜉 · 𝜉 ≥ 𝑚 |𝜉 |2

for all 𝜉 ∈ R𝑑, 𝑚 > 0 independent of 𝜉.

(ii) 𝜂 ∈ L𝑝/(𝑝−2) (Ω) and 𝜂 ≥ 0.

(iii) 𝜕Ω is a Lipschitz boundary.

(iv) 𝑔 ∈ L2(Ω).

Then problem (15) has a unique weak solution in H1
0(Ω).

Let 𝑉ℎ ⊂ H1
0(Ω) be a given FEM subspace. We look for the numerical solution 𝑢ℎ of (15)

in 𝑉ℎ: ∫
Ω

(𝐺∇𝑢ℎ · ∇𝑣 + 𝜂𝑢ℎ𝑣) =
∫
Ω

𝑔𝑣, 𝑣 ∈ 𝑉ℎ. (16)
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The corresponding linear algebraic system has the form

(Gℎ +Dℎ)c = gℎ,

where Gℎ and Dℎ are the corresponding stiffness and mass matrices, respectively. We apply
the matrix Gℎ as preconditioner, thus the preconditioned form of (16) is given by

(Iℎ +G−1
ℎ Dℎ)c = g̃ℎ (17)

with g̃ℎ = G−1
ℎ gℎ. Then we apply the CGM to (17) and the auxiliary systems with Gℎ can

be solved efficiently with fast solvers.

Theorem 2. Let 2 < 𝑝 < 2𝑑
𝑑−2 , and 𝑚 the lower spectral bound of 𝐺 given by assumption (𝑖).

Then there exists 𝑪 > 0 such that for all 𝑘 ∈ N(
∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

) 1
𝑘

≤ 𝑪𝑘−𝛼, (18)

where 𝛼 = 1
𝑑
− 1

2 +
1
𝑝
.

Proof. Let us consider the Hilbert space L2(Ω) endowed with the usual inner product. Let
𝐷 = {𝑢 ∈ H1

0(Ω) ∩ H2(Ω) / 𝐺∇𝑢 ∈ H1(Ω)𝑁 }. We define the operators

𝑆𝑢 ≡ −div(𝐺∇𝑢), 𝑢 ∈ 𝐷 and 𝑄𝑢 ≡ 𝜂𝑢, 𝑢 ∈ H1
0(Ω)

and since 𝑝 < 2∗ = 2𝑁
𝑁−2 , the embedding I : H1

0(Ω) → L𝑝 (Ω) is compact, in particular, there
exists 𝑐 > 0 such that for all 𝑢 ∈ H1

0(Ω)

∥𝑢∥L𝑝 (Ω) ≤ 𝑐∥𝑢∥H1
0 (Ω)

. (19)

Then
⟨𝑆𝑢, 𝑢⟩ ≥ 𝑚

∫
Ω

|∇𝑢 |2 ≥ 𝑚𝜈

∫
Ω

𝑢2, 𝑢 ∈ 𝐷,

where 𝜈 is the Sobolev constant. Hence, the energy space 𝐻𝑆 is a well-defined Hilbert space
with ⟨𝑢, 𝑣⟩𝑆 =

∫
Ω
𝐺∇𝑢 ·∇𝑣. It is easy to see that 𝐻𝑆 = H1

0(Ω) and that the following inequality

√
𝑚∥𝑢∥H1

0 (Ω)
≤ ∥𝑢∥𝐻𝑆

(20)
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holds for all 𝑢 ∈ 𝐻𝑆. Furthermore,

∥𝑄𝑆𝑣∥𝐻𝑆
= sup

∥𝑢∥𝐻𝑆
=1

|⟨𝑄𝑆𝑣, 𝑢⟩𝑆 | = sup
∥𝑢∥𝐻𝑆

=1
⟨𝑄𝑣, 𝑢⟩

= sup
∥𝑢∥𝐻𝑆

=1

∫
Ω

𝜂𝑣𝑢

≤ sup
∥𝑢∥𝐻𝑆

=1

(∫
Ω

|𝜂 |
𝑝

𝑝−2

) 𝑝−2
𝑝

(∫
Ω

|𝑣 |𝑝
) 1

𝑝
(∫

Ω

|𝑢 |𝑝
) 1

𝑝

≤ 𝑐 sup
∥𝑢∥𝐻𝑆

=1
∥𝜂∥L𝑝/(𝑝−2) (Ω) ∥𝑣∥L𝑝 (Ω) ∥𝑢∥H1

0 (Ω)

≤ 𝑐
√
𝑚

sup
∥𝑢∥𝐻𝑆

=1
∥𝜂∥L𝑝/(𝑝−2) (Ω) ∥𝑣∥L𝑝 (Ω) ∥𝑢∥𝐻𝑆

=
𝑐𝑀
√
𝑚
∥𝑣∥L𝑝 (Ω) ,

(21)

where 𝑀 = ∥𝜂∥L𝑝/(𝑝−2) (Ω). Here we applied the extension of Hölder’s inequality ([4, Th. 4.6])
with

1 =
1

𝑝
+ 1

𝑝
+

(
𝑝 − 2

𝑝

)
.

Hence 𝑄𝑆 is compact and self-adjoint in 𝐻𝑆.
Let 𝜆𝑛 = 𝜆𝑛 (𝑄𝑆). Since 𝑄𝑆 is a compact self-adjoint operator in 𝐻𝑆, by [7, Ch.6, Th.1.5]

we have the following characterization of the eigenvalues of 𝑄𝑆:

∀𝑛 ∈ N : 𝜆𝑛 (𝑄𝑆) = min{∥𝑄𝑆 − 𝐿𝑛−1∥ / 𝐿𝑛−1 ∈ L(𝐻𝑆), rank(𝐿𝑛−1) ≤ 𝑛 − 1}. (22)

By taking the minimum over a smaller subset of finite rank operators, we obtain

𝜆𝑛 (𝑄𝑆) ≤ min{∥𝑄𝑆 −𝑄𝑆𝐿𝑛−1∥ / 𝐿𝑛−1 ∈ L(𝐻𝑆), rank(𝐿𝑛−1) ≤ 𝑛 − 1}. (23)

Now, by (21) and (20) we get

∥𝑄𝑆 −𝑄𝑆𝐿𝑛−1∥ = sup
𝑢∈𝐻𝑆

∥(𝑄𝑆 −𝑄𝑆𝐿𝑛−1)𝑢∥𝐻𝑆

∥𝑢∥𝐻𝑆

= sup
𝑢∈𝐻𝑆

∥𝑄𝑆 (𝑢 − 𝐿𝑛−1𝑢)∥𝐻𝑆

∥𝑢∥𝐻𝑆

≤ 𝑐𝑀
√
𝑚

sup
𝑢∈𝐻𝑆

∥𝑢 − 𝐿𝑛−1𝑢∥L𝑝 (Ω)
∥𝑢∥𝐻𝑆

≤ 𝑐𝑀
√
𝑚
√
𝑚

sup
𝑢∈H1

0 (Ω)

∥𝑢 − 𝐿𝑛−1𝑢∥L𝑝 (Ω)
∥𝑢∥H1

0 (Ω)
.

This, together with (23) yields

𝜆𝑛 (𝑄𝑆) ≤
𝑐𝑀

𝑚
min{∥I − 𝐿𝑛−1∥ / 𝐿𝑛−1 ∈ L(H1

0(Ω),L
𝑝 (Ω)), rank(𝐿𝑛−1) ≤ 𝑛 − 1}

:=
𝑐𝑀

𝑚
𝑎𝑛 (I),

(24)
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where 𝑎𝑛 (I) denotes the approximation numbers of the compact embedding I : H1
0(Ω) ↦→

L𝑝 (Ω), [11]. Furthermore, we have the estimation [6]

𝑎𝑛 (I) ≤ 𝐶𝑛−𝛼, 𝛼 =
1

𝑑
− 1

2
+ 1

𝑝
,

for some constant 𝐶 > 0. Therefore, we arrive at the inequality

𝜆𝑛 (𝑄𝑆) ≤
𝐶𝑐𝑀

𝑚
𝑛−𝛼 .

Now, taking the arithmetic mean on both sides and estimating the sum from above by an
integral we obtain

1

𝑘

𝑘∑︁
𝑛=1

𝜆𝑛 (𝑄𝑆) ≤
𝐶𝑐𝑀

𝑚

1

𝑘

(
1 +

∫ 𝑘

1

1

𝑥𝛼

)
≤ 𝐶𝑐𝑀

𝑚(1 − 𝛼)
1

𝑘𝛼
. (25)

Then, by (14), we conclude. □

Remark 1. The auxiliary problem S𝑤𝑘 = Q𝑝𝑘 for the PCGM can be solved easily with fast
solvers due to the special structure of 𝑆, [9], [5].

3.1 Elliptic systems

In this section, we prove that the previous results can be extended to systems of the form{
−Δ𝑢𝑖 + 𝜂𝑖1𝑢1 + . . . 𝜂𝑖𝑠𝑢𝑠 = 𝑔𝑖,

𝑢𝑖 |𝜕Ω = 0, (𝑖 = 1, . . . , 𝑠),
(26)

where 𝑯 = {𝜂𝑖 𝑗 }𝑠𝑖, 𝑗=1 is a symmetric positive semidefinite variable coefficient matrix such that

∀𝑖, 𝑗 ∈ {1, . . . , 𝑠} : 𝜂𝑖 𝑗 ∈ L𝑝/(𝑝−2) (Ω).

We work with the space L𝑝 (Ω)𝑠 with the norm

∥𝑢∥L𝑝 (Ω)𝑠 =

(
𝑠∑︁
𝑗=1

∥𝑢 𝑗 ∥2L𝑝 (Ω)

)1/2
, 𝑢 = (𝑢1, . . . , 𝑢𝑠) ∈ L𝑝 (Ω)𝑠 .

Let 𝐻 = L2(Ω)𝑠. Let 𝑢 = (𝑢1 . . . 𝑢𝑠) ∈ 𝐷 = (H1
0(Ω) ∩ H2(Ω))𝑠, we define the operators

𝑆𝑢 =

©­­­­­«
−Δ𝑢1
.

.

.

−Δ𝑢𝑠

ª®®®®®¬
, 𝑄𝑢 = 𝑯𝑢, 𝑢 ∈ H1

0(Ω)
𝑠 . (27)

8
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Clearly, 𝑆 is a uniformly positive symmetric operator in 𝐻. In fact, by Poincare’s inequality

⟨𝑆𝑢, 𝑢⟩ ≥ 1

𝜈2

𝑠∑︁
𝑖=1

∥𝑢𝑖∥2L2 (Ω) =
1

𝜈2
∥𝑢∥2𝐻 , (28)

where 𝜈 is the Sobolev constant. Then, the energy space 𝐻𝑆 is well defined with

⟨𝑢, 𝑣⟩𝑆 =
𝑠∑︁

𝑖=1

∫
Ω

∇𝑢𝑖∇𝑣𝑖, ∥𝑢∥2𝐻𝑆
=

𝑠∑︁
𝑖=1

∫
Ω

|∇𝑢𝑖 |2

and so 𝐻𝑆 = H1
0(Ω)

𝑠. Furthermore, by (19) we have that

∥𝑢∥2𝐻𝑆
≥ 1

𝑐2

𝑠∑︁
𝑖=1

∥𝑢𝑖∥2L𝑝 (Ω) =
1

𝑐2
∥𝑢∥2L𝑝 (Ω)𝑠 . (29)

Then there exists a unique operator 𝑄𝑆 : H
1
0(Ω)

𝑠 → L2(Ω)𝑠 such that

⟨𝑄𝑆𝑢, 𝑣⟩𝑆 =
∫
Ω

𝑠∑︁
𝑖, 𝑗=1

𝜂𝑖 𝑗𝑢 𝑗𝑣𝑖 . (30)

It is easy to see that 𝑄𝑆 is self-adjoint in 𝐻𝑆. Analogous to (21), by (29), (28) and
Hölder’s inequality we get

∥𝑄𝑆𝑣∥𝐻𝑆
= sup

∥𝑢∥𝑆=1
|⟨𝑄𝑆𝑣, 𝑢⟩𝑆 |

≤ sup
∥𝑢∥𝐻𝑆

=1

𝑠∑︁
𝑖, 𝑗=1

∫
Ω

|𝜂𝑖 𝑗 | |𝑣 𝑗 | |𝑢𝑖 |

≤ sup
∥𝑢∥𝐻𝑆

=1

𝑠∑︁
𝑖, 𝑗=1

∥𝜂𝑖 𝑗 ∥L𝑝/(𝑝−2) (Ω) ∥𝑣 𝑗 ∥L𝑝 (Ω) ∥𝑢𝑖∥L𝑝 (Ω)

≤ 𝑀 sup
∥𝑢∥𝐻𝑆

=1

𝑠∑︁
𝑗=1

∥𝑣 𝑗 ∥L𝑝 (Ω)

𝑠∑︁
𝑖=1

∥𝑢𝑖∥L𝑝 (Ω)

≤ 𝑀 sup
∥𝑢∥𝐻𝑆

=1

√
𝑠

(
𝑠∑︁
𝑗=1

∥𝑣 𝑗 ∥2L𝑝 (Ω)

)1/2
√
𝑠

(
𝑠∑︁

𝑖=1

∥𝑢𝑖∥2L𝑝 (Ω)

)1/2
= 𝑀𝑠 sup

∥𝑢∥𝐻𝑆
=1

∥𝑣∥L𝑝 (Ω)𝑠 ∥𝑢∥L𝑝 (Ω)𝑠

≤ 𝑀𝑠𝑐∥𝑣∥L𝑝 (Ω)𝑠 ,

(31)

where 𝑀 = max𝑖, 𝑗 ∥𝜂𝑖 𝑗 ∥L𝑝/(𝑝−2) (Ω). Hence, we have proved that 𝑄𝑆 is a compact self-adjoint
operator in 𝐻𝑆. Then, the characterization (22) of the eigenvalues of 𝑄𝑆 holds. The rest of
the proof follows by modifying the scalar case. In this case, we take the minimum over a
smaller subset of finite rank operators to obtain

𝜆𝑛 (𝑄𝑆) ≤ min{∥𝑄𝑆 −𝑄𝑆𝐿𝑛−1∥ / 𝐿𝑛−1 ∈ Ldiag (𝐻𝑆), rank(𝐿𝑛−1) ≤ 𝑛 − 1},

9
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with 𝐿𝑛−1 ∈ Ldiag (𝐻𝑆) if and only if

𝐿𝑛−1𝑢 =

©­­­­­«
𝐿𝑠
𝑛−1𝑢1
.

.

.

𝐿𝑠
𝑛−1𝑢𝑠

ª®®®®®¬
, such that 𝐿𝑠

𝑛−1 ∈ L(H1
0(Ω)) and rank(𝐿𝑠

𝑛−1) ≤
[
𝑛 − 1

𝑠

]
.

Furthermore, we shall use the approximation numbers

𝑎[ 𝑛−1
𝑠 ] = min

{
∥𝐼 − 𝑇𝑛−1∥ / 𝑇𝑛−1 ∈ L(H1

0(Ω),L
𝑝 (Ω)), rank(𝑇𝑛−1) ≤

[
𝑛 − 1

𝑠

]}
.

Note that if 𝑛 ≤ 𝑠, then we can use 𝜆𝑛 (𝑄𝑆) ≤ ∥𝑄𝑆∥, and for 𝑛 ≥ 𝑠 + 1 the above numbers are
estimated by

𝑎[ 𝑛−1
𝑠 ] ≤ 𝐶

[
𝑛 − 1

𝑠

]−𝛼
, (32)

with 𝛼 = 1
𝑑
− 1

2 +
1
𝑝
. Then

∥𝑄𝑆 −𝑄𝑆𝐿𝑛−1∥ = sup
𝑢∈𝐻𝑆

∥(𝑄𝑆 −𝑄𝑆𝐿𝑛−1)𝑢∥𝐻𝑆

∥𝑢∥𝐻𝑆

= sup
𝑢∈𝐻𝑆

∥𝑄𝑆 (𝑢 − 𝐿𝑛−1𝑢)∥𝐻𝑆

∥𝑢∥𝐻𝑆

≤ 𝑀𝑠𝑐 sup
𝑢∈𝐻𝑆

∥𝑢 − 𝐿𝑛−1𝑢∥L𝑝 (Ω)𝑠

∥𝑢∥𝐻𝑆

= 𝑀𝑠𝑐 sup
𝑢∈𝐻𝑆

(∑𝑠
𝑗=1 ∥𝑢𝑖 − 𝐿𝑠

𝑛−1𝑢𝑖∥
2
L𝑝 (Ω)

)1/2
(∑𝑠

𝑗=1 ∥𝑢𝑖∥2H1
0 (Ω)

)1/2

≤ 𝑀𝑠𝑐 sup
𝑢∈𝐻𝑆

(
∥𝐼 − 𝐿𝑠

𝑛−1∥
2
L(H1

0 (Ω),L𝑝 (Ω))
∑𝑠

𝑗=1 ∥𝑢𝑖∥2H1
0 (Ω)

)1/2
(∑𝑠

𝑗=1 ∥𝑢𝑖∥2H1
0 (Ω)

)1/2
= 𝑀𝑠𝑐∥𝐼 − 𝐿𝑠

𝑛−1∥L(H1
0 (Ω),L𝑝 (Ω)) .

Therefore

𝜆𝑛 (𝑄𝑆) ≤ 𝑀𝑠𝑐min

{
∥𝐼 − 𝐿𝑠

𝑛−1∥L(H1
0 (Ω),L𝑝 (Ω)) / 𝐿𝑠

𝑛−1 ∈ L(H1
0(Ω),L

𝑝 (Ω)), rank(𝐿𝑠
𝑛−1) ≤

[
𝑛 − 1

𝑠

]}
= 𝑀𝑠𝑐𝑎[ 𝑛−1

𝑠 ] .

Hence, by (32) we obtain the estimation

𝜆𝑛 (𝑄𝑆) ≤ 𝑀𝑠𝑐𝐶

[
𝑛 − 1

𝑠

]−𝛼
, 𝑛 ≥ 𝑠 + 1. (33)

10
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𝜆𝑛 (𝑄𝑆) ≤ ∥𝑄𝑆∥ ≤ 𝑀𝑠𝑐 𝑛 ≤ 𝑠. (34)

Note that there exists 𝑘0, 𝑘1 > 0 such that

𝑘0 ≤ [𝑥]
𝑥

≤ 𝑘1, ∀𝑥 > 1.

Thus, for 𝑛 ≥ 𝑠 + 1 [
𝑛 − 1

𝑠

]−𝛼
≤ 1

𝑘𝛼0

𝑠𝛼

(𝑛 − 1)𝛼

=

(
𝑠

𝑘0

)𝛼 (
𝑛𝛼

(𝑛 − 1)𝛼

)
1

𝑛𝛼

≤
(
(𝑠 + 1)
𝑘0

)𝛼
1

𝑛𝛼
.

Hence, (33) becomes

𝜆𝑛 (𝑄𝑆) ≤ 𝑀𝑠𝑐𝐶

(
(𝑠 + 1)
𝑘0

)𝛼
1

𝑛𝛼
:= 𝐶1

1

𝑛𝛼
.

and by taking arithmetic meaning on both sides and splitting the sum we get

1

𝑘

𝑘∑︁
𝑛=1

𝜆𝑛 (𝑄𝑆) ≤
1

𝑘

(
𝑠∥𝑄𝑆∥ +

𝑘∑︁
𝑛=𝑠+1

𝜆𝑛 (𝑄𝑆)
)

≤ 1

𝑘

(
𝑠∥𝑄𝑆∥ + 𝐶1

𝑘∑︁
𝑛=𝑠+1

1

𝑛𝛼

)
≤ 1

𝑘

(
𝑠∥𝑄𝑆∥ + 𝐶1

∫ 𝑘

𝑠

1

𝑥𝛼

)
≤ 𝑠

𝑘
∥𝑄𝑆∥ +

𝐶1

1 − 𝛼

1

𝑘𝛼

≤ 𝐶2
1

𝑘𝛼
,

where 𝐶2 = max{𝑠∥𝑄𝑆∥, 𝐶1(1 − 𝛼)−1}. Finally, by Corollary 1, we have proved there exists
𝑪 > 0 such that for all 𝑘 ∈ N (

∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

) 1
𝑘

≤ 𝑪𝑘−
1
𝛼 . (35)

3.2 Extension to non-symmetric systems

Let us now study (26) for 𝑯 = {𝜂𝑖, 𝑗 }𝑠𝑖, 𝑗=1 non-symmetric. We apply the generalized minimal
residual (GMRES) method to the corresponding discretized system. This method is an
extension of the CG method to non-symmetric systems, [10].

First, we note that in the proof of Theorem 1 we show that (9) also holds if we exchange
the eigenvalues of 𝑄𝑆 with its singular values. Furthermore, by [Robust Super. conv.
paper] we have an analogue of Corollary 1 when 𝐴 is non-hermitian. In this case, the

11
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GMRES method is applied to the system and we obtain superlinear converge estimates for
the residuals 𝑟𝑘 = 𝐴𝑢𝑘 − 𝑔:(

∥𝑟𝑘 ∥𝐴
∥𝑟0∥𝐴

)1/𝑘
≤ ∥𝐴−1∥

𝑘

𝑘∑︁
𝑗=1

𝑠 𝑗 (𝑄𝑆), ∀𝑘 = 1, 2, . . . , 𝑛. (36)

To show that Theorem 2 still holds in this case, we follow the same steps as we did
previously. We define the operators 𝑆, 𝑄,𝑄𝑆 as before, (27), (30). Here, 𝑄𝑆 is no longer
self-adjoint and its eigenvalues do not coincide with its singular values. Nonetheless, by [7,
Ch.6, Th.1.5] we have the following characterization of the singular values of 𝑄𝑆:

∀𝑛 ∈ N : 𝑠𝑛 (𝑄𝑆) = min{∥𝑄𝑆 − 𝐿𝑛−1∥ / 𝐿𝑛−1 ∈ L(𝐻𝑆), rank(𝐿𝑛−1) ≤ 𝑛 − 1}. (37)

Then, similarly to the proof for symmetric systems, we can show that there exists 𝐶1 > 0
such that

1

𝑘

𝑘∑︁
𝑛=1

𝑠𝑛 (𝑄𝑆) ≤ 𝐶1
1

𝑘𝛼
, 𝛼 =

1

𝑑
− 1

2
+ 1

𝑝
. (38)

Therefore, by (36), we obtain that there exists 𝐶2 > 0 such that(
∥𝑟𝑘 ∥𝐴
∥𝑟0∥𝐴

)1/𝑘
≤ 𝐶2

1

𝑘𝛼
. (39)

Finally, note that 𝑟𝑘 = 𝐴𝑒𝑘 . Then ∥𝑒𝑘 ∥𝐴 ≤ ∥𝐴−1∥∥𝑟𝑘 ∥𝐴 and ∥𝑟0∥ ≤ ∥𝐴∥∥𝑒0∥𝐴. Hence(
∥𝑒𝑘 ∥𝐴
∥𝑒0∥𝐴

)1/𝑘
≤ 𝐶2

1

𝑘𝛼
cond(𝐴)1/𝑘 ≤ 𝐶2

1

𝑘𝛼
.

where cond(𝐴) = ∥𝐴∥∥𝐴−1∥ < 1 denotes the conditioning number of 𝐴.

Remark 2. For elliptic symmetric systems, the auxiliary problem S𝑤𝑘 = Q𝑝𝑘 for the PCGM
becomes 

−Δ(𝑤𝑘 )1 =
∑𝑠

𝑗=1 𝜂1 𝑗 (𝑝𝑘 ) 𝑗 ,

−Δ(𝑤𝑘 )2 =
∑𝑠

𝑗=1 𝜂2 𝑗 (𝑝𝑘 ) 𝑗 ,

.

.

.

−Δ(𝑤𝑘 )𝑠 =
∑𝑠

𝑗=1 𝜂𝑠 𝑗 (𝑝𝑘 ) 𝑗 ,

(𝑤𝑖) |𝜕Ω = 0, ∀𝑖 = 1, . . . , 𝑠.

Note that these equations are independent of one another. Hence, they can be solved in
parallel. Furthermore, in practice, these types of systems can be large, e.g in [12], long-range
transport of air pollution models are described by a system of PDEs with 𝑠 = 30. That is, S
is considerably simpler than B.

12
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4 A numerical example
Let us solve the following PDEs numerically{

−Δ𝑢 + 𝜂𝑢 = 𝑓𝑖, in Ω = [0, 1]2,
𝑢 |𝜕Ω = 0

(𝐸𝑖)

with 𝑖 = 1, 2. Here 𝜂 ∈ L
𝑝

𝑝−2 (Ω) is defined as

𝜂(𝑥, 𝑦) = (𝑥2 + 𝑦2)−𝛽, 0 < 𝛽 <
𝑝 − 2

𝑝

and
𝑓1(𝑥, 𝑦) = 2𝜋2 sin(𝜋𝑥) sin(𝜋𝑦) + 𝜂(𝑥, 𝑦) sin(𝜋𝑥) sin(𝜋𝑦),

𝑓2(𝑥, 𝑦) = 1.

The exact solution of (𝐸𝑖) with 𝑖 = 1 is 𝑢(𝑥, 𝑦) = sin(𝜋𝑥) sin(𝜋𝑦).
Applying the finite element method to (𝐸𝑖) with stepsize ℎ = 1/(𝑁 + 1) we obtain the

algebraic system
(Gℎ +Dℎ)c𝑖 = g𝑖ℎ, 𝑖 = 1, 2. (𝐸′

𝑖
)

Then, we apply Gℎ as a preconditioner and we solve the preconditioned system using the
CGM.

(a) Numerical solution with 𝑁 = 20. (b) Exact solution

Figure 1: Graphics of the numerical and exact solution of (𝐸𝑖) with 𝑖 = 1 and 𝛽 = 1/4.

To measure the error of the PCGM, we use the energy norm

∥𝑒∥𝐴ℎ
= ⟨(𝐺ℎ + 𝐷ℎ)𝑒, 𝑒⟩

1
2 𝑒 ∈ R𝑑 .

Table 1 shows the error and the residual obtained at each iteration 𝑘 of the method applied
to (𝐸′

𝑖
) for 𝑖 = 1, 2 respectively. We see that it takes 7 steps to reach a O(10−14) error.

To test Theorem 2, note that 𝑑 = 2 and so 𝛼 = 1
𝑝
. Furthermore, recall that

𝜂 ∈ L
𝑝

𝑝−2 (Ω) if 𝛽 <
𝑝 − 2

𝑝
= 1 − 2𝛼.

13
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That is, if 𝑝 > 2
1−𝛽 , we get that the theorem holds when 𝛼 <

1−𝛽
2 . Table 2 shows the values

of

𝛿𝑘 =

( ∥𝑒𝑘 ∥𝐴ℎ

∥𝑒0∥𝐴ℎ

) 1
𝑘

𝑘𝛼, 𝛿𝑘 =

( ∥𝑟𝑘 ∥𝐴ℎ

∥𝑟0∥𝐴ℎ

) 1
𝑘

𝑘𝛼

for different choices of 𝛽 (and hence of 𝛼) with 𝑖 = 1, 2 respectively, while fixing a mesh size.
The value of 𝛿𝑘 corresponds to the system (𝐸′

𝑖
) with 𝑖 = 1 and the value of 𝛿𝑘 corresponds

to (𝐸′
𝑖
) with 𝑖 = 2. This demonstrates that (18) holds in these cases since the values of 𝛿𝑘

and 𝛿𝑘 are bounded by a constant.
Finally, Table 3 shows the values of 𝛿𝑘 and 𝛿𝑘 for different mesh sizes while fixing the

values of 𝛽. Here we verify that the results of Theorem 2 are not sensitive to the size of the
mesh.

Table 1: Error and residual obtained with PCGM applied to the system (𝐸′
𝑖
) with 𝑁 = 40,

𝛽 = 1/2.

∥𝑢𝑘 − 𝑐∥𝐴ℎ
∥𝑟𝑘 ∥𝐴ℎ

k 𝑓1 𝑓2

1 0.029824319963556 0.193919601149356
2 0.000187444098497 0.003450112947903
3 0.000000867801395 0.000042352080426
4 0.000000003253692 0.000000414294358
5 0.000000000011404 0.000000003016228
6 0.000000000000049 0.000000000016330
7 0.000000000000018 0.000000000000058

Table 2: Values of 𝛿𝑘 and 𝛿𝑘 for different 𝛼’s and 𝛽’s for a fixed mesh size 𝑁 = 40.

𝛽 = 1/4, 𝛼 = 0.374 𝛽 = 1/3, 𝛼 = 0.31 𝛽 = 1/2, 𝛼 = 0.24 𝛽 = 2/3, 𝛼 = 0.15 𝛽 = 3/4, 𝛼 = 0.12

k 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2

1 0.0050 0.1383 0.0072 0.1414 0.0129 0.1575 0.0209 0.1768 0.0261 0.1904
2 0.0036 0.0622 0.0054 0.0660 0.0107 0.0784 0.0182 0.0917 0.0235 0.1019
3 0.0042 0.0475 0.0056 0.0478 0.0094 0.0533 0.0157 0.0616 0.0208 0.0697
4 0.0052 0.0342 0.0059 0.0347 0.0086 0.0404 0.0139 0.0473 0.0184 0.0538
5 0.0061 0.0291 0.0064 0.0292 0.0081 0.0322 0.0124 0.0370 0.0163 0.0430
6 0.0095 0.0255 0.0083 0.0248 0.0081 0.0259 0.0112 0.0311 0.0145 0.0360
7 0.0217 0.0230 0.0186 0.0221 0.0154 0.0224 0.0135 0.0263 0.0135 0.0299
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Table 3: Values of 𝛿𝑘 for different mesh sizes with 𝛽 = 3/4, 𝛼 = 0.12.

𝑁 = 20 𝑁 = 40 𝑁 = 80

k 𝑓1 𝑓2 𝑓1 𝑓2 𝑓1 𝑓2

1 0.0259 0.1892 0.0261 0.1904 0.0262 0.1907
2 0.0229 0.1005 0.0235 0.1019 0.0237 0.1023
3 0.0197 0.0678 0.0208 0.0697 0.0211 0.0702
4 0.0168 0.0515 0.0184 0.0538 0.0189 0.0546
5 0.0145 0.0401 0.0163 0.0430 0.0170 0.0440
6 0.0127 0.0331 0.0145 0.0360 0.0155 0.0372
7 0.0124 0.0272 0.0135 0.0299 0.0157 0.0315
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