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PRODUCT MEASURE SPACE

Let (X,A, µ) and (Y,B, ν) be measure spaces.
A product measure space is the space X × Y equipped with

• the σ-algebra A⊗B generated by the set {A × B : A ∈ A,B ∈ B},

• a product measure λ : A⊗ B → R+
0 .

PRODUCT MEASURE

A measure λ : A⊗ B → R+
0 is a product measure of µ and ν if for all

A × B, where A ∈ A and B ∈ B,

λ(A × B) = µ(A)ν(B).
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DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Disclaimer: product measure is not necessarily unique. Let
E ∈ A⊗ B, we define
The primitive product measure:

π(E) = inf

{ ∞∑
n=1

µ(An)ν(Bn) : An ∈ A,Bn ∈ B,E ⊆
∞⋃

n=1

An × Bn

}
.

The completely locally determined (c.l.d) product measure:

ρ(E) = sup {π(E ∩ (A × B)) : A ∈ A,B ∈ B;µ(A), ν(B) < ∞} .
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DISTINCT PRODUCT MEASURES ON THE SAME SPACE

Suppose that

• X,Y = [0, 1];

• A = Lebesgue σ-algebra, B = P([0, 1]);

• µ = Lebesgue measure, ν = counting measure.

Consider the set ∆ = {(x, x) : x ∈ [0, 1]} in A⊗ B

∆ =

∞⋂
n=1

∞⋃
k=1

[
k
n
,

k + 1
n

]
×
[

k
n
,

k + 1
n

]
Then, the primitive product measure gives π(∆) = +∞ and the c.l.d
measure gives ρ(∆) = 0.
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INTRODUCTION

+ c

(R,B, ν)

(X,A, µ)

∈ A⊗ BB

B + c

Let the product measure space
(X × R,A⊗ B, µ× ν) and a set B ∈ A⊗ B be given.

For any c ∈ R, define
B + c :− {(x, y + c) : (x, y) ∈ B} ∈ A ⊗ B.

Is it true that µ× ν (B + c) = µ× ν (B) ?

W
ith

Le
be

sg
ue

m
ea

su
re

ν

4



Preliminary check



Introduction Preliminary check Ultraproduct construction The current progress via the ultraproduct structure The next step

PRELIMINARY CHECK

We need that any vertical translate B + c of B is in the product
σ-algebra A⊗ B. Its proof utilises ideas from ...

CONSTRUCTION OF A GENERATED σ-ALGEBRA

Let X be a set and {∅,X} ⊆ C ⊆ P(X) be a family of (generating)
sets. Let α be an ordinal and λ be a limit ordinal. Define

1. F0 := C;

2. Fα+1 := Fα ∪
{

F : A ∈ Fα

}
∪
{⋃

n∈N Fn : Fn ∈ Fα

}
and

3. Fλ :=
⋃
α<λ

Fα.

Then, Fω1 is the generated by C.
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ULTRAFILTER AND ULTRAPRODUCT

ULTRAFILTER

Let X be a non-empty set and P(X) be its power set. Then, the
non-empty family F ⊊ P(X) is called an ultrafilter on X if

• ∅ ̸∈ F ;

• for every sets A,B ∈ F , A ∩ B ∈ F ;

• for every B ∈ P(X) and A ∈ F , if A ⊆ B then B ∈ F , and

• for any A ∈ P(X), we have that either A ∈ F or X\A ∈ F .

Our ultrafilter F will be built from the family of finite measure sets in
the product measure space.
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ULTRAFILTER AND ULTRAPRODUCT

ULTRAPRODUCT

Let I be a non-empty index set. Let Xi be sets, i ∈ I, and F be an
ultrafilter on I. Let u, v : I →

⋃
i∈I Xi be elements of the space∏

i∈I Xi. We define the ultraproduct of {Xi}i∈I under F to be the
space

∏
i∈I Xi under the equivalence relation

u ≡ v ⇐⇒ {i : u(i) = v(i)} ∈ F .

We denote the ultraproduct by
∏

i∈I Xi/F .

Each Xi will be finite measure sets in A⊗B with the measure (µ× ν)i

obtained through the restriction of µ× ν to Xi.
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σ-ALGEBRA AND MEASURE

QUESTION 1.
What is the copy of our σ-algebra in the embedded measure space?

Plan: work with decomposable sets and κ-regularity.

DECOMPOASBLE SETS

Let X ⊆
∏

i∈I Xi/F be a subset. We say that X is decomposable iff
for all i ∈ I, there exists Ai ⊆ Xi such that X =

∏
i∈I Ai/F .

The family of decomposable sets are closed under complementation.

8



Introduction Preliminary check Ultraproduct construction The current progress via the ultraproduct structure The next step

σ-ALGEBRA AND MEASURE

κ-REGULARITY

Let I a non-empty index set. Let κ be an infinite cardinal, and F be
an ultrafilter. We say F is κ-regular iff there exists a subfamily
E ⊆ F where |E| = κ is such that for all i ∈ I we have {e ∈ E : i ∈ e}
is finite.

If our ultrafilter is κ-regular, then we have strong control on the
κ-complete Boolean algebra generated by the family of
decomposable sets.
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σ-ALGEBRA AND MEASURE

QUESTION 2.
How can we define the measure within the ultraproduct construction?

ULTRALIMIT

Let F be an ultrafilter on I. Let {ai}i∈I ⊆ R be a sequence of real
numbers. We say that a is the ultralimit, denoted by a := limF ai if
for every ε > 0 we have

{i ∈ I : |ai − a| < ε} ∈ F .

Define the measure for any decomposable set X =
∏

i∈I Ai/F as

µ(X) = lim
F

(µ× ν)i(Ai).
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CURRENT PROGRESS

THE MEASURE IS INVARIANT UNDER TRANSLATION BY A CONSTANT

Let (X,A, µ) be a measure space, and (R,B, ν) be a real measure
space equipped with the Lebesgue measure.
Let (X × R,A⊗ B, µ× ν) be a product measure space.
Then, for any c ∈ R and E ∈ A⊗ B

µ× ν (E + c) = µ× ν (E) .

• The statement may be proven via the ultraproduct construction in
case where (X,A, µ) is a σ-finite measure space.
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FUTURE WORK

THE MEASURE IS INVARIANT UNDER TRANSLATION BY A CONSTANT

Let (X,A, µ) be a measure space containing an atom of infinite
measure, and (R,B, ν) be a real measure space equipped with the
Lebesgue measure.
Let (X × R,A⊗ B, µ× ν) be a product measure space.
Then, for any c ∈ R and E ∈ A⊗ B

µ× ν (E + c) = µ× ν (E) .
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Thank you for your attention!
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