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1 Introduction
This semester, I’ve primarily studied books and articles related to algebraic ge-
ometry over C. I’ve studied the Lefschetz theory of complex algebraic varieties,
and the Hodge structure of Kähler manifolds and varieties.

2 The Lefschetz Theory of Complex Varieties
For this section, I’ve read Lamotke’s paper [1].

A pencil in CPN is the set of hyperplanes that contain a given (N − 2)-
dimensional linear subspace. The axis of the pencil is the common (N − 2)-

dimensional subspace. Note that a pencil is just a projective line G ⊂
(
CPN

)∗

in the dual space (hence homeomorphic to S2). The Lefschetz theory of C vari-
eties considers the (co)homology of a smooth (nonsingular) irreducible variety
intersected with the hyperplanes of a pencil. From the homology of these inter-
sections, we can derive strong structure theorems of the homology of the variety,
using the monodromy of a fiber bundle.

Let X denote the smooth irreducible variety in CPN . We have the following
proposition:

Proposition 2.1. 1. Hyperplanes that are tangent to X form a closed irre-
ducible subvariety X∗ ⊂

(
CPN

)∗
. X∗ is called the dual variety of X.

2. The hyperplanes that intersect X transversally form the Zariski-open set(
CPN

)∗
\X∗.

Instead of working with X, we consider the blowup of X along the axis of
the given pencil G with axis A: Y = {(x, t) ∈ X×G|x ∈ Ht}, where Ht denotes

the tangent hyperplane of X corresponding to t ∈
(
CPN

)∗
(X is smooth). We

denote X ′ := X ∩A, Y ′ := X ′ ×G.

Proposition 2.2. 1. Y is an irreducible smooth variety.

2. The projection f : Y → G has r = classX critical values, the points
X∗ ∩G. Here classX is the degree of the dual variety X∗.

3. Every critical value of f is nondegenerate (f is Morse), whenever G is
generic.
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The main idea is to decompose the projective line G, which is homeomorphic
to an S2, into two closed hemispheres D+, D− such that the critical values of
f lie in intD+, and choosing a point b ∈ S1 = D+ ∩ D−. We denote the
intersection of X with the hyperplane corresponding to b by Xb.

Theorem 2.3 (Lefschetz). Hq(X,Xb) = 0 for all q ≤ dimX − 1

This is proven using the lemma that Lamotke calls the "main lemma of
Lefschetz":

Theorem 2.4 (Main Lemma). Hq(Y+, Yb) = 0 if q ̸= dimX, and Hq(Y+, Yb)
is free of rank r = classX.

We take a more detailed look on the homology at n := dimX. From the
long exact sequence of relative homology, we have a connecting homomorphism
∂∗ : Hn(Y+, Yb) → Hn−1(Yb). Its image is called the module of vanishing cycles,
denoted V ; and agrees with the kernel of i∗ : Hn−1(Xb) → Hn−1(X). In a
similar fashion, we define the module I∗, the module of invariant cocylces as
the image of i∗ : Hn−1(X) → Hn−1(Xb). The module of invariant cycles is then
I, the Poincaré-dual of I∗.

By using properties of Poincaré-duality, we have the following theorem.

Proposition 2.5. 1. rankHn−1(Xb) = rankV + rankHn−1(X)

2. rank I = rankHn+1(X) = rankHn−1(X).

3. rank I + rankV = rankHn−1(Xb).

In fact, if field coefficients are chosen, something much stronger holds:

Theorem 2.6 (Hard Lefschetz). Hn−1(Xb) = I ⊕ V .

Note that similarly to the Hard Lefschetz theorem, in the following section,
field coefficients are chosen. The proof of the Hard Lefschetz theorem is not
included in the article. In Arapura’s book [2], a cohomological version is proved
with completely different methods, namely using Hodge theory. For the details
see section 3.

We take the sequence X ′ ⊂ Xb ⊂ X, and extend it into the following:

0 = Xn+1 ⊂ Xn ⊂ . . . ⊂ X3 ⊂ X2 = X ′ ⊂ X1 = Xb ⊂ X0 = X

by making each Xi to be a generic hyperplane section of Xi−1, hence dimXi =
n − i. (Note that during this study, we always mean dimensions over C). Let
u ∈ H2(X) denote the Poincaré dual of the fundamental class [Xb] ∈ H2n−2(X).
We have that the Poincaré-duals [Xq]

∗ ∈ H2q(X) agree with uq. Lamotke proves
in his paper, that the Hard Lefschetz theorem is equivalent to the following
statement:

Theorem 2.7 (Hard Lefschetz 2). For all q = 1, . . . n, we have

Hn+q(X) ≃ Hn−q(X), x 7→ uq ∩ x
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Note that by Poincaré duality, in case of field coefficients we have isomor-
phisms Hn+q(X) ≃ Hn−q(X), the statement of the above theorem is about
different isomorphisms, which are induced by the cap product with the funda-
mental class of Xb. From the above form of the Hard Lefschetz, we derive the
equally important statement:

Theorem 2.8 (Hard Lefschetz 3 - Primitive Decomposition). ∀x ∈ Hn+q ∃!x0, x1, . . .
s.t. x = x0 + u ∩ x1 + u2 ∩ x2 + . . ., and ∀x ∈ Hn−q ∃!x0, x1, . . . s.t. x =
uq ∩ x0 + uq−1 ∩ x1 + . . ., where the above xi are all primitive elements, i.e
uq+1 ∩ x = 0 (note that q + 1 is the smallest such index j for which a nonzero
x can have the property that uj ∩ x = 0).

The last form of the Hard Lefschetz theorem considers the Lie-algebra sl2
of 2 × 2 matrices with trace 0. sl2 is 3-dimensional, with the following basis
elements:

e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
, h =

[
1 0
0 −1

]
,

satisfying the Lie-bracket relations:

[eh] = −2e, [fh] = 2f, [ef ] = h.

Theorem 2.9 (Hard Lefschetz 4 - sl2-module). H∗(X) is an sl2-module.

Here
f : Hj(X) → Hj−2(X), x 7→ u ∩ x

h : Hj(X) → Hj(X), x 7→ (j − n)x.

The definition of e requires the primitive deomposition of the cohomology ring.
We define e to be e(ur∩x) = r(q−r+1)ur−1∩x. Then f, h, e are endomorphisms
of H∗(X), that satisfy the commutator relations of the e, f, h basis elements of
sl2. Hence, we have a representation sl2 → gl(H∗(X)), which turns H∗(X)
indeed into an sl2-module.

For the last part of this section, we consider some methods used to prove
the main lemma (2.4).

When we take the space G∗ = G \ {t1, . . . tr}, where r is the class of X,
the ti are the critical values of the projection f : Y → G, and choose a regular
value b ∈ G; the fundamental group π1(G

∗, b) acts on the homology of Yb

(because Y ∗ = f−1(G∗) is a locally trivial fiber bundle over G∗ with generic
fibers Yb = Xb). If wi is the loop that goes from b to "almost" ti, circles
ti once counterclockwise and returns to b, then π1(G

∗, b) is generated by the
homotopy classes [w1], [w2], . . . [wr]. Each wi consists of a line li and a circle
Si that is the boundary of a disk Di. Let L denote the preimage f−1(

⋃
li),

K = L ∪ f−1(
⋃
Di). The li can be chosen disjoint, so that K is a strong

deformation retract of Y+, and L is a deformation retract of Yb. We will also
use the notation Ti = f−1(Di) and Fi = f−1(ai), where ai is the point in
which li reaches Di. Since f is Morse, we can choose coordinates such that
f(z) = ti + z21 + . . . z2n, in a suitably small neighbourhood of a critical point
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xi, where f(xi) = ti. This local neighbourhood is denoted (T, F ) in accordance
with the notation Ti, Fi.

The orientation of the real n-disk ∆ = {z ∈ T |all zi are real} freely generates
Hn(T, F ), for q ̸= n, Hq(T, F ) = 0. We have elements [∆i] ∈ Hn(Y+, Yb),
induced by the inclusions, and these generate Hn(Y+, Yb) freely. The connecting
homomorphism gives us

δi = ∂∗∆i ∈ Hn−1(Yb).

Such elements are called vanishing cycles. The name is motivated by the fact,
that the vanishsing cycles are exactly the ones that vanish at the critical point,
when moved among its thimble ∆i.

Upon investigation, we find that

Proposition 2.10. The self-intersection number (δi, δi) is 0 for n even, and
(−1)(n−1)/2 · 2 for n odd.

This gives us the Picard-Lefschetz formula:

Theorem 2.11. If q ̸= n − 1 then π1(G
∗, b) acts trivially on Hq(Yb). For

q = n− 1, the elementary path wi acts by (wi)∗(x) = x+ (−1)(n−1)/2(x, δi)δi.

The proof of the Picard-Lefschetz formula requires topological examination
of the monodromy, mostly omitted here.

The module of invariant cocylces contains exactly the elements of Hn−1(Yb)
that are invariant under the action of π1(G

∗, b). One further important result
is the following:

Theorem 2.12 (Monodromy Theorem). If we have coefficients in a field, then
TFAE:

1. The Hard Lefschetz theorem.
2. V = 0
3. Hn−1(Yb) is a semisimple π1(G

∗, b)-module.

3 Hodge Theory
Dureing the second half of the semester, I studied the Hodge theory of Rieman-
nian manifolds, and then Kähler manifolds.

For an orientable Riemannian (real, smooth) manifold, the inner product
on the top exterior power En

X gives a tensor det(g) ∈ Γ(X, En
X ⊗ En

X), where g
denotes the inner product defined by the metric. This in turn gives us a volume
form dvol, which is well-defined because the manifold can be oriented. The
Hodge-star operator is defined by

α ∧ ∗β = (α, β)dvol,

it is C∞(X)-linear. The main use of the Hodge-star is the following identity

⟨α, β⟩ =
∫
X

(α, β)dvol =

∫
X

α ∧ ∗β.
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Theorem 3.1 (The Hodge Theorem). Every de Rham cohomology class has a
unique representative that minimalizes the norm. This is called the harmonic
representative.

If d∗ is the adjoint of d with respect to the above defined inner product,
then a form is harmonic iff d∗α = dα = 0. By defining the Hodge Laplacian
∆ = d∗d+ dd∗, we get the further characterization: α is harmonic iff ∆α = 0.

In the book of Arapura, certain application of the Hodge theorem and Hodge
Laplacian are investigated. For example a version of the Poincaré-duality (for-
mulated with perfect pairings) is proven. I did study these sections, together
with the proof of the Hodge theorem (which uses the so called heat equation of
the Riemannian manifold), but in order to keep the presentation short, I omit
them.

When examining the structure of C manifolds, we divide the sheaf of dif-
ferential forms into subsheafs. Given an n-dimensional C-manifold with OX

sheaf of holomorphic functions, Ek
X is the sheaf of complex-valued C∞ forms.

We denote by Ωp
X the sheaf of holomorphic p-forms, which is a subsheaf of Ep

X

stable under multiplication by OX . We get further structure on the manifold
by using the following definition:

Definition 3.2. E(p,0) is the C∞-submodule of Ep
X generated by Ωp

X . E(0,p) =

E(p,0), and E(p,q) = E(p,0) ∧ E(0,q).

Theorem 3.3 (Dolbeault’s theorem). For any complex manifold X,

1. 0 → Ωp
X → E(p,0) ∂−→ E(p,1) ∂−→ . . . is a soft resolution (i.e a resolution in

which each element is a soft sheaf).

2.

Hq(X,Ωp
X) ≃

ker
(
E(p,q) → E(p,q+1)

)
im

(
E(p,q−1) → E(p,q)

)
Similarly to the Riemannian case, several operators are introduced: ∂∗,∆∂ ,∆∂ .

The various relations of these operators are key in the methods of Hodge theory.
For compactness sake, we omit these theorems.

We wish to extend (in some form) the Hodge theorem for complex manifold.
As it turns out, this can only be done for a special subclass of complex manifolds,
the so called Kähler manifolds. We call a Riemannian metric on a C-manifold
Hermitian, if the multiplication by

√
−1 is orthogonal. Equivalently, it is a

hermitian inner product defined on the tangent spaces, that varies in a C∞

fashion. If zi = xi +
√
−1yi are local analytic coordinates, for a Hermitian

metric H we have that H =
∑

hijdzi ⊗ dzj , where (hij) is a positive definite
Hermitian matrix.

Definition 3.4. A C-manifold is Kähler, if it admits a Hermitian metric that
is locally Euclidean up to second order, i. e. if for any point p ∈ X there exist
analytic local coordinates z1, . . . , zn with zi = 0 at p, such that

hij ≡ δij mod (x1, y1, . . . , xn, yn)
2.
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It is important that any smooth complex projective variety is Kähler with the
Fubini-Study metric. By the Kodaira embedding theorem and Chow’s theorem
we in fact have that a compact complex manifold is a nonsingular projective
algebraic variety iff it has a Kähler metric with rational Kähler class. Related
to the Käher metric we have a Kähler form ω. For H =

∑
hijdzi ⊗ dzj . The

image of H in E(1,1)
X is the Kähler metric ω; it is real i.e. ω = ω.

We can extend the Hodge star to E∗
X , and define ∗(α) = ∗α, to get two

Hodge star operators on our complex manifold. We define additional operators
on X:

• ∆∂ = ∂∗∂ + ∂∂∗ with bidegree (0, 0)

• ∆∂ = ∂
∗
∂ + ∂∂

∗
with bidegree (0, 0)

• L = ω∧ with bidegree (1, 1)
• Λ = − ∗ L∗, with bidegree (−1,−1).
Using these operators, we obtain the following theorem:

Theorem 3.5. Suppose that X is a compact Kähler manifold.

• Hq(X,Ωp
X) is isomorphic to the space of harmonic (p, q)-forms.

• As a corollary, Hp(X,Ωq
X) ≃ Hn−p(X,Ωn−q

X )

The main theorem of Hodge theory is the following:

Theorem 3.6 (Hodge decomposition). If X is a compact Kähler manifold, then

• A form a is harmonic iff its (p, q)-components are.

• Hi(X,C) ≃
⊕

p+q=i H
q(X,Ωp

X)

• Complex conjugation induces an R-linear isomorphisms between (p, q) and
(q, p) forms. Therefore Hq(X,Ωp

X) ≃ Hp(X,Ωq
X).

Similarly to Betti numbers, we have Hodge numbers hp,q(X) = dimHq(X,Ωp
X),

these are finite by the Hodge decomposition. We also obtain a Künneth-like for-
mula on the cohomology of the sheaves Ωp

X .
I have also looked at the proof of the Hard Lefschetz theorem using Hodge

theory. This uses the above-defined operators to explicitly give the sl2-representation
of the cohomology ring.

4 Notes
During this semester, I have also studied some properties of algebraic surfaces,
divisors (starting with Riemann surfaces, and generalizing to schemes), the re-
lated exponential exact sequence of sheaves, and (very briefly) algebraic cycles
and their relation to Hodge theory, pure Hodge structure and Hodge filtration
(again, briefly). As these were not the main goal, and to keep things short, I do
not go into details regarding these topics.
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